Федеральное государственное бюджетное учреждение науки Институт космических исследований Российской академии наук (ИКИ РАН)

УДК 621

Номер государственной регистрации - Ф 40946

Инвентарный номер 053/000106-12

«УТВЕРЖДАЮ» Директор ИКИ РАН, академик И.М. Зеленый Ися 2012 г.

Экз. №

Итоговый научно-технический отчет № 1431/(27-1001-2011)-1322/87-2012

«Проработка предварительной программы экспериментов на орбитальном, спускаемом-посадочном аппаратах и субспутнике проекта "Венера-Д"»

НИР «Венера-Д»

Этап 3 календарного плана договора № 1431/(27-1001-2011)-1322/87-2012 от 10.01.2012 пп. 2.3.1-2.3.12 ТЗ «Венера-Д»

Научный руководитель НИР «Венера-Д», зав. лаб. ИКИ РАН, д. ф.-м. н.,

<u>Мар</u> Л. В. Засова «29» мая 2012 г.

Ответственный исполнитель НИР «Венера-Д», старший научный сотрудник ИКИ РАН, к.ф.-м.н.

le. Н. И. Игнатьев 9» years 2012 г.

Москва 2012

Список исполнителей

Исполнители:

Зав. лаб. 531

д. ф.-м. н

С.н.с. отд.53

к. ф.-м. н

В.н.с отд.53

Засова Л.В. (введение, 1, 2, 3, 6, заключение)

подпись, дата 29.05.20/2

Unf

Н.И. Игнатьев (разделы 4,5,8)

подпись, дата 29.05.2012

Б.Е. Мошкин (раздел 11)

подпись, дата 29.05. 2012

С.н.с. отд. 53

В.н.с отд.53

Зав.лаб 532

Зав. лаб. 536

Вед. инж. лаб 531

подпись, дата 29.05.12

М.В. Герасимов (раздел 9)

подпись, дата 29.05.12

И.И. Виноградов (раздел 8)

подпись, дата 29.05.12

Блеховения, 29.05.2012 Ю.А. Бреховских (введение ,

подпись, дата

заключение)

29.00.12

подпись, дата

А.П. Экономов (раздел 10, 11)

В.М. Готлиб (раздел 7)

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

AMC	автоматическая межпланетная станция
БНО	баллистико-навигационное обеспечение
БЦВМ	бортовая цифровая вычислительная машина
ДУ	двигательная установка
ИВК	информационно-вычислительный комплекс
ИП	измерительный пункт
ИСВ	искусственный спутник Венеры
ИС3	искусственный спутник Земли
КА	космический аппарат
НКУ	наземный комплекс управления
OA	орбитальный аппарат
ПА*	посадочный аппарат
РСДБ	радиоинтерферометрические измерения со сверхдлинными
CA*	базами спускаемый аппарат
CC	субспутник
L-диапазон	длина радиоволны ~32 см
S-диапазон	длина радиоволны 13.1 см
Х-диапазон	длина радиоволны 3.6 см
R_0	радиус планеты;
t	время;
	интервал времени, на котором определяются параметры
τ	сигнала;
	вертикальная компонента скорости захода КА за диск
V	планеты;
L1 и L2	расстояния от перицентра линии АВ до приемника и до
. 2	излучателя:
L=	эффективное расстояние межлу перицентром линии AR и
$L_{1} \cdot L_{2} \cdot (L_{1} + L_{2})^{-1}$	приемником.
$\mathbf{L}_1 \mathbf{L}_2 (\mathbf{L}_1 \cdot \mathbf{L}_2)$	mpinominition,

λ и f_{dm}	длина волны и частота излучаемого ДМ-сигнала;					
$f_{ m cm}$	частота излучаемого СМ-сигнала;					
$q = f_{\rm cm}/f_{\rm dm}$	отношение частот зондирующих сигналов;					
$f(t)$ и $\phi(t)$	частота и фаза принимаемого сигнала;					
$E_{\rm e0}$ и $E_{\rm e}(t)$	интенсивность не искаженного средой и зондирующего					
	сигнала;					
	величина флуктуаций частоты и интенсивности,					
σ_{f} и σ_{E}	обусловленные инструментальным шумом и мешающими					
	факторами;					
$f_{ m D}(t)$ и $f_{ m C}(t)$	измеренные частоты ДМ- и СМ-сигналов;					
$\delta f(t)$	разностная частота, формируемая из $f_{\rm D}(t)$ и $f_{\rm C}(t)$;					
$f_{\rm a}(t)$ и $f_{\rm p}(t)$	изменения в атмосфере и ионосфере частоты ДМ-					
	сигнала;					
$f_{ap}(t) = f_a(t) + f_p(t)$	изменение частоты зондирующего сигнала;					
$X_{\mathrm{D}}(t)$ и $X_{\mathrm{C}}(t)$	рефракционные изменения интенсивности ДМ- и СМ-					
	сигналов;					
$X_{\mathrm{a}}(t)$ и $X_{\mathrm{p}}(t)$	рефракционные ослабления ДМ-сигнала в атмосфере и					
	ионосфере;					
$X_{ap}(t)=X_a(t)+X$	рефракционное ослабление зондирующего сигнала;					
p(t)						
h(t)	высота над поверхностью планеты;					
p(t)	прицельный параметр радиолуча;					
$\xi(t)$	угол рефракции радиолуча;					
N(h)	высотный профиль электронной концентрации;					
n(h)	вертикальный профиль показателя преломления					
	зондируемой среды;					
Z_{O}	зенитный угол Солнца в области зондирования.					

*) В данном отчете обозначения ПА (посадочный аппарат) и СА (спускаемый аппарат) относятся к спускаемому на поверхность (посадочному) аппарату.

ΡΕΦΕΡΑΤ

Научно технический отчет состоит из 11 глав, 23 таблицы, 78 рисунков, списка литературы из 77 наименований, 220 страниц текста.

Ключевые слова: Венера, посадочный аппарат, орбитальный аппарат, субспутник, баллистико-навигационное обеспечение, выбор мест посадки, приборы посадочного аппарата, забор проб атмосферы и грунта, дистанционные радиофизические исследования, радиопросвечивание атмосферы и ионосферы, информационный обмен с космическим аппаратом.

Результатом выполнения НИР «Венера-Д» является проработка и детализация научной программы проекта и приборного состава КНА.

Определен проектный облик миссии, включающей ОА, ПА и СС. Проработаны варианты схем, обеспечивающих доставку спускаемого аппарата в заданную область над поверхностью Венеры, а также выведение на орбиты искусственных спутников Венеры орбитального КА и субспутника для выполнения программы экспериментов комплекса «Венера-Д». Произведен расчёт окон стартов в период с 2018 г. по 2026 г; определены энергетические характеристики перелётов и предложены оптимальные окна; для оптимальных условий старта вычислены области достижимости спускаемого аппарата на поверхности Венеры. Оптимальным (кроме 2018 года) можно рассматривать окно старта 2023 года с точки зрения характеристической скорости и баллистической достижимости тессерной местности. Рассмотрены различные варианты отделения субспутника от основного КА. Эти варианты различаются периодами орбит. Произведено уточнение районов посадки ПА на поверхность Венеры с учетом баллистической достижимости этих районов для конкретных дат запуска, важных для безопасной посадки характеристик рельефа и ожидаемого химико-минералогического состава материала поверхности. Уточнены циклограммы работы приборов ПА с попыткой оптимизации объема и качества получаемой научной информации. Представлены научные цели и технические требования экспериментов двухчастотного радиопросвечивания газовой оболочки и бистатической радиолокации поверхности планеты, показана необходимость создания универсального, многофункционального комплекса приемо-передающей аппаратуры, бортового приемника L-, S-, Х-диапазонов, способного принимать и определять параметры радиосигналов, излучаемых наземной антенной, и обеспечивать высокий энергетический потенциал радиолинии ОА-Земля (60 дБГц и выше). Произведено уточнение характеристик заборных

устройств проб атмосферы и грунта для экспериментов ХМС-ПА и ИСКРА-В. Проработаны детали установки МДЛС–ИСКРА-В на ПА и алгоритм получения вертикального распределения летучих и их изотопов, а также произведен предварительный отбор молекул и изотопов и спектральных окон для их исследования. Продолжена проработка теплоизоляции для приборов, которые должны работать вне гермоотсека. Рассчитана теплоизоляция для станции весом 100 кг и временем жизни на поверхности 24 часа. Составлено техническое описание и проект ТЗ на разработку, изготовление и испытания стенда (камеры высокого давления) для испытаний приборов, предназначенных для работы в атмосфере и на поверхности планеты Венера. Произведена предварительная оценка информационных возможностей передачи научной информации с аппаратов, входящих в комплексный космический проект «Венера-Д».

СОДЕРЖАНИЕ

Список исполнителей	
Обозначения и сокращения	
Реферат	
Содержание	
Введение	12
1. УТОЧНЕНИЕ ЭЛЕМЕНТНОГО СОСТАВА КОСМИЧЕСКОГО КОМПЛЕКСА ДЛЯ	
ОБЕСПЕЧЕНИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ МИССИИ	16
2. УТОЧНЕНИЕ ПРОГРАММЫ ЭКСПЕРИМЕНТОВ НА ЭЛЕМЕНТАХ МИССИИ	
«ВЕНЕРА-Д»	19
2.1 Посадочный аппарат	19
2.1.1 Характеристики приборов посадочного аппарата миссии «Венера-Д»	20
2.1.2 Предложения по общей циклограмме работы приборов посадочного аппарата	24
2.2 Орбитальные аппараты (ОА и СС). Научная аппаратура. Предварительная прог	рамма
работы	26
3. УТОЧНЕНИЕ РАЙОНОВ ПОСАДКИ ПА НА ПОВЕРХНОСТЬ ВЕНЕРЫ С УЧ	ЕТОМ
БАЛЛИСТИЧЕСКОЙ ДОСТИЖИМОСТИ ЭТИХ РАЙОНОВ ДЛЯ КОНКРЕТНЫХ	ДАТ
ЗАПУСКА, ВАЖНЫХ ДЛЯ БЕЗОПАСНОЙ ПОСАДКИ ХАРАКТЕРИСТИК РЕЛЬЕ	ФА И
ОЖИДАЕМОГО ХИМИКО-МИНЕРАЛОГИЧЕСКОГО СОСТАВА МАТЕРІ	ИАЛА
ПОВЕРХНОСТИ	38
3.1 Зона достижимости 2018 года	42
3.2 Зона достижимости 2020 года	49
3.3 Зоны достижимости 2021 и 2024 годов	51
3.4 Зона достижимости 2023 года	51
3.5 Зона достижимости 2026 года	56
4. РАЗРАБОТКА ВАРИАНТОВ СХЕМ, ОБЕСПЕЧИВАЮЩИХ ДОСТАВКУ І	IA B
ЗАДАННУЮ ОБЛАСТЬ НАД ПОВЕРХНОСТЬЮ ВЕНЕРЫ	65
4.1. Расчёт характеристик окон стартов для перелётов Земля – Венера до 2026 г	66
4.1.1. Методика расчёта оптимальных окон старта	66
4.1.2. Окно стартов 2020 г	66
4.1.3. Окно стартов 2021 г	68
4.1.4. Окно стартов 2023 г.	70
4.1.5. Окно стартов 2024 г	71
4.1.6. Окно стартов 2026 г	73
4.1.7. Оптимальные даты старта к Венере	74

4.2. Разработка вариантов схем, обеспечивающих доставку спускаемого аппарата в заданную
область над поверхностью Венеры75
4.2.1. Условия входа спускаемого аппарата в атмосферу Венеры
4.2.2. Анализ точности приведения КА к Венере
4.3. Расчёт районов баллистической достижимости СА на поверхности Венеры82
4.3.1. Методика расчёта районов баллистической достижимости спускаемого
аппарата
4.3.2. Окно стартов 2020 г
4.3.3. Окно стартов 2021 г
4.3.4. Окно стартов 2023 г
4.3.5. Окно стартов 2024 г
4.3.6. Окно стартов 2026 г 109
5. РАЗРАБОТКА ВАРИАНТОВ СХЕМ ВЫВЕДЕНИЯ НА ОРБИТЫ ИСКУССТВЕННЫХ
СПУТНИКОВ ВЕНЕРЫ ОРБИТАЛЬНОГО КА И СУБСПУТНИКА ДЛЯ ВЫПОЛНЕНИЯ
ПРОГРАММЫ ЭКСПЕРИМЕНТОВ КОМПЛЕКСА «ВЕНЕРА-Д»116
5.1. Геометрия орбит ИСВ основного КА и субспутника116
5.2. Определение параметров движения КА на орбите искусственного спутника
Венеры
Выводы
6. УТОЧНЕНИЕ ТРЕБОВАНИЙ К ЭНЕРГЕТИЧЕСКОМУ ПОТЕНЦИАЛУ РАДИОЛИНИЙ
ОА-СС И ОА-ЗЕМЛЯ ДЛЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ ДВУХЧАСТОТНОГО
РАДИОПРОСВЕЧИВАНИЯ ИОНОСФЕРЫ И АТМОСФЕРЫ ВЕНЕРЫ И ДЛЯ
ВЫПОЛНЕНИЯ НАУЧНОЙ ПРОГРАММЫ ПРОЕКТА «ВЕНЕРА-Д124
6.1 Уточнение постановки научных задач экспериментов двухчастотного
радиопросвечивания ионосферы и атмосферы Венеры для выполнения научной программы
проекта "Венера-Д
6.1.1 Метод двухчастотного радиопросвечивания
6.1.2. Получение данных об атмосфере Венеры
6.1.3. Получение данных об ионосфере Венеры
6.1.4. Аналитическое обоснование метода диагностики слоистых структур134
6.1.5. Получение данных о волновых процессах в системе атмосфера-
ионосфера
6.2. Уточнение требований к радиолинии OA→CC при выполнении научных экспериментов
двухчастотного радиопросвечивания ионосферы и атмосферы
Венеры

6.3 Проработка требований к радиолинии ОА→Земля при выполнении научных
экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы
Венеры
Заключение
7. УТОЧНЕНИЕ ТРЕБОВАНИЙ К РАДИОЛИНИЯМ МИССИИ ВЕНЕРА-Д В ЧАСТИ
ПЕРЕДАЧИ НАУЧНОЙ ИНФОРМАЦИИ, В ТОМ ЧИСЛЕ ПЕРЕДАЧИ ИНФОРМАЦИИ С
ПА161
7.1. Схема информационного обмена161
7.2. Магистральный канал орбитальный аппарат- Земля162
7.3. Передача данных со спускаемого аппарата
7.4. Передача информации с малых СА167
7.5. Ретрансляционный канал атмосферный зонд – орбитальный аппарат168
7.6. Интерферометрия с большой базой для атмосферного зонда170
7.7. Использование орбитального радиолокатора для получения координат атмосферного
зонда171
8. ПРОРАБОТКА ДЕТАЛЕЙ УСТАНОВКИ МНОГОКАНАЛЬНОГО ДИОДНО-
ЛАЗЕРНОГО СПЕКТРОМЕТРА (МДЛС –ИСКРА-В) НА ПА И ОБЕСПЕЧЕНИЯ
ПОЛУЧЕНИЯ ВЕРТИКАЛЬНОГО РАСПРЕДЕЛЕНИЯ ЛЕТУЧИХ И ИХ ИЗОТОПОВ,
КЛЮЧЕВЫХ ДЛЯ ПОНИМАНИЯ ЭВОЛЮЦИИ АТМОСФЕРЫ. ВЫБОР ОСНОВНЫХ
МОЛЕКУЛ И ИХ ИЗОТОПОВ (SO ₂ , SO, COS, CO ₂ , H ₂ O, HDO, CO, HCL, C ₂ H ₂ , H ₂ S, HF И
Т.Д.), КОТОРЫЕ МОЖНО ИЗМЕРИТЬ В АТМОСФЕРЕ ВЕНЕРЫ С УЧЕТОМ
ПАРАМЕТРОВ СУЩЕСТВУЮЩИХ ДИОДНЫХ ЛАЗЕРОВ, ИЗЛУЧАЮЩИХ В
БЛИЖНЕМ И СРЕДНЕМ ИК ДИАПАЗОНАХ
8.1. Об особенностях отбора и разрежения газовых проб венерианской атмосферы на этапе
снижения посадочного аппарата миссии Венера-Д172
8.2. О выборе основных молекул и изотопов для измерений в атмосфере Венеры при помощи
многоканального диодно-лазерного спектрометра МДЛС – прибора ИСКРА-В. Измерения
содержания изотопов как источник информации об эволюции атмосферы
планеты
8.2.1. Диоксид серы SO ₂
8.2.2. VEODULIĂ EDD CO. VEROCULUĂ EDD CO. CORECULUI $dun OCS u upotoru 1^{13}C/^{12}C D CO. U$

8.2.2. Угарный газ СО, углекислый газ СО _{2,} кароонилсульфид ОСS и изотопы 15 С/	Свсои
CO ₂ , ³⁴ S/ ³³ S/ ³² S в OCS	176
8.2.3 Изотопы углекислого газа CO ₂ и водяного пара H ₂ O	176
8.2.4. Углекислый газ CO ₂ и водяной пар H ₂ O – основные молекулы	177

9. УТОЧНЕНИЕ ХАРАКТЕРИСТИК УСТРОЙСТВА ЗАБОРА ГРУНТА И	
АТМОСФЕРНЫХ ПРОБ, А ТАКЖЕ РАЗРЕЖЕНИЯ АТМОСФЕРНЫХ ПРОБ	ЯЛЯ
МДЛС	181
10. ПРОДОЛЖЕНИЕ ПРОРАБОТКИ ТЕПЛОИЗОЛЯЦИИ ПРИБОРОВ,	
УСТАНОВЛЕННЫХ НА ПА И РАБОТАЮЩИХ НА ЭТАПЕ СПУСКА В НИХ	КНЕЙ
АТМОСФЕРЕ И НА ПОВЕРХНОСТИ, ПРИ НЕОБХОДИМОСТИ УСТАНОВК	И ИХ ВНЕ
ГЕРМООТСЕКА	
10.1. Посадочный аппарат с временем жизни 24 часа. Новая концепция	
теплоизоляции	
10.2. Расчет ДС	
10.3. Конструкция ДС	192
10.4. Заключение	
11. ПРОРАБОТКА ТЕХНИЧЕСКОГО ПРЕДЛОЖЕНИЯ НА ИЗГОТОВЛ	ЛЕНИЕ К В Д.
ПРОЕКТ ТЗ НА ИЗГОТОВЛЕНИЕ КВД ДЛЯ ИСПЫТАНИЯ ПРИБОРОВ И	ОТДЕЛЬНЫХ
ЭЛЕМЕНТОВ ПРИ ТЕМПЕРАТУРАХ И ДАВЛЕНИИ В АТМОСФЕРЕ ВЕНИ	ЕРЫ И НА ЕЕ
ПОВЕРХНОСТИ	194
11.1 Стенд для испытания научных приборов в условиях атмосферы пла	анеты Венера.
Техническое предложение	194
11.1.1 Назначение стенда	
11.1.2. Основные требования к стенду	195
11.1.3. Состав стенда	195
11.1.4. Отдельные системы стенда	196
11.1.4.1. Камера высокого давления (КВД)	196
11.1.4.2. Система заполнения газом	198
11.1.4.3. Система нагрева	
11.1.4.4. Система диагностики стенда	200
11.1.5. Компоновка стенда	201
11.1.6. Заключение	
11.2. Проект ТЗ на разработку стенда для испытаний приборов, предназначенн	ых для работы
в атмосфере и на поверхности планеты Венера для испытаний приборов	
11.2.1. Технические требования	
11.2.1.1 Состав аппаратуры	
11.2.1.2 Требования по назначению	204
11.2.1.3. Требования по безопасности	207

11.2.1.4. Требования к конструкторской и технологической

документации	208
11.2.1.5. Требования по надёжности	208
11.2.1.6. Требования по эргономике и технической эстетике	208
11.2.1.7. Требования по эксплуатации, удобству технического обслуживания,	ремонту и
хранению	
11.2.2. Технико-экономические требования	
11.2.3. Требования по видам обеспечения	
11.2.4. Этапы выполнения работы	210
Заключение	211
Список использованных источников	214

введение

Целью научно-исследовательской работы «Венера-Д» является уточнение научной программы проекта и приборного состава КНА, исходя из результатов анализа проектного облика элементов миссии: посадочного аппарата, орбитального аппарата и субспутника, а также формирование требований к служебным системам КА и баллистический анализ миссии. Работа выполнялась ИКИ и соисполнителями: институтами РАН ГЕОХИ, ИПМ и ФИРЭ РАН.

Уточнен проектный облик миссии. Сделано заключение, что состав миссии, включающей посадочный аппарат, орбитальный аппарат и субспутник, является оптимальным с точки зрения степени проработки для запуска в 2018 году, использования многократно успешно работавших в прошлом элементов миссии, современного комплекса научной аппаратуры, который адекватно удовлетворяет требования к выполнению поставленных научных задач. Уточнена программа работы экспериментов на ОА и циклограмма работы экспериментов ПА на спуске и на поверхности. Произведен рассчитаны и проанализированы баллистический анализ миссии, энергетические характеристики окон старта 2018 – 2026 год. Для оптимальных условий старта вычислены области достижимости спускаемого аппарата на поверхности Венеры, выбраны места посадки, оптимальные с точки зрения достижимости их ПА в соответствующие окна старта. Оптимальным (кроме 2018 года) можно рассматривать окно старта 2023 года с точки зрения характеристической скорости и баллистической достижимости тессерной местности. Продолжена проработка систем забора грунта и систем забора и разрежения атмосферных проб, проработка прибора МДЛС для установки на ПА. Продолжена проработка теплоизоляции для условий существования в нижней атмосфере и на поверхности Венеры. Проработана конструкция станции весом 100 кг, которая может прожить на поверхности Венеры в течение 24 часов. Подготовлено ТЗ на изготовление стенда для испытаний приборов и теплоизоляции в условиях на поверхности Венеры и техническое описание камеры высокого давления (КВД). Проработаны требования к радиолиниям для осуществления радиопросвечивания атмосферы, ионосферы и бистатической радиолокации поверхности. Уточнены принципы информационного обмена между элементами миссии.

Отчёт состоит из Введения, 11 глав, Заключения и списка литературы.

<u>Раздел 1</u> посвящен уточнению проектного облика миссии. Показано, что проект «Венера-Д» состоящий из ОА, ПА (типа «Венера-Вега») и СС оптимально проработан для запуска в 2018 году. Принцип проекта - использование самого современного комплекса научной аппаратуры в сочетании с многократно проверенными средствами доставки является залогом успешности научного проекта. В случае более позднего запуска может быть проработано включение в проект АЗ или ДС (небольшой долгоживущей станции, технологического образца).

Раздел 2 посвящен уточнению программы работы приборов на ПА, ОА и СС.

Уточнена циклограмма работы приборов на поверхности, предложено увеличить возможное время работы приборов гамма-спектрометра, хроматографа ХМС-П и миниатюризированного Мессбауэровского спектрометра. Для телевизионного комплекса рассмотрена возможность увеличения количества включений. Для многоканального диоднолазерного спектрометра ИСКРА-В непрерывные измерения на этапе спуска ПА остались без изменений, а периодические измерения на поверхности в начале каждого часа были заменены на частые включения в течение всего возможного времени жизни ПА (по материалам ГЕОХИ РАН, исполнители ГЕОХИ: М. Я. Маров, А.Т. Базилевский, М. А. Иванов, Е. Н. Гусева).

Вторая часть раздела 2 посвящена уточнению программы работы приборов на OA: в основной надирной моде ориентации, в моде затменных наблюдений, в моде лимбовых наблюдениях и в режиме просвечивания ионосферы и атмосферы и бистатической радиолокации поверхности, а также обсуждается совместная работа приборов на OA и CC.

<u>Раздел 3</u> (по материалам ГЕОХИ РАН) посвящена уточненному выбору районов посадки ПА на поверхность Венеры с учетом баллистической достижимости этих районов для конкретных дат запуска, важных для безопасной посадки, характеристик рельефа и ожидаемого химико-минералогического состава материала поверхности; Если отдавать предпочтение тессерной местности, то до 2024 года наилучшим с точки зрения достижимости является 2018 год, следующим является 2023, который также предпочтителен с точки зрения.

<u>Раздел 4</u> состоит из трех разделов. В первом разделе проведён расчёт окон стартов в период с 2018 г. по 2026 г. Определены энергетические характеристики перелётов, выбраны оптимальные окна. Показано, что наилучшими с энергетической точки зрения являются окна 2023 и 2024 г. (по материалам ИПМ РАН, исполнители ИПМ: Тучин А.Г., Заславский Г.С., Сазонов В.В., Степаньянц В.А., Ярошевский В.С.,Лавренов С.М., Тучин Д.А., Шишов В.А., Киселёва И.П., Капралов М.А.)

<u>Раздел 5</u> (по материалам ИПМ РАН) посвящен разработке схем выведения на орбиты искусственных спутников Венеры орбитального КА и субспутника для выполнения программы экспериментов комплекса "Венера-Д".

<u>Раздел 6</u> посвящен уточнению требований к энергетическому потенциалу радиолиний ОА→СС и ОА→Земля для проведения экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы Венеры и бистатической радиолокации ее поверхности при выполнении научной программы проекта "Венера-Д". (По материалам ФИРЭ РАН, исполнители ФИРЭ: А.Л. Гаврик, Ю.А. Гаврик, Т.Ф. Копнина, Л.А. Луканина, И.П. Никитин, Р.Р. Салимзянов)

<u>Раздел 7</u> рассматривает информационные связи аппаратов, входящих в проект ВЕНЕРА-Д, с Землей и в некоторых случаях между собой: ОА на вытянутой эллиптической орбите с периодом обращения порядка земных суток, субспутник с периодом обращения около 2 – 0.5 суток, спускаемый аппарат (СА) со временем жизни на поверхности Венеры до 3 часов или более.

<u>Раздел 8</u> рассматривает требования к забору атмосферных проб, обусловленные требованиям к точности измерения химического состава атмосферы на этапе спуска от высоты 65 км до поверхности с разрешением по высоте 1 км и выбор дополнительных спектральных интервалов для измерения содержания CO₂, CO, H₂O, COS и их изотопомеров с учетом возможностей элементной базы.

<u>Раздел 9</u> посвящен уточнению характеристик заборных устройств проб атмосферы и грунта для экспериментов ХМС-ПА и ИСКРА-В. Эксперименты ХМС-ПА и ИСКРА-В направлены на проведение прямых прецизионных измерений химического состава атмосферы Венеры и пород ее поверхности, что является одной из важнейших задач миссии Венера-Д на спускаемом аппарате (ПА).

<u>Раздел 10</u> содержит проработку теплоизоляции и конструкции долгоживущей станции на поверхности. Показано, что для технологии, использующей традиционные материалы и аппаратуру на основе кремниевой электроники, предельным временем жизни станции массой 100 кг на поверхности является 24 часа. Дальнейшее увеличение времени жизни ДС на поверхности лежит либо на пути использования высокотемпературной электроники на основе SiC или GaN или GaAs, либо на революционном пути использования высокотемпературной экранно-вакуумной теплоизоляции и высокоэффективых поглотителей, работающих с использованием высокого теплового эффекта испарения жидкости (например, воды), либо использования активной теплозащиты-холодильных агрегатов.

14

<u>Раздел 11.</u> Посвящен проработке технических предложений и проекта технического задания на изготовление стенда для испытаний приборов и теплоизоляции в условиях существования на поверхности Венеры, включающего кеамеру высокого давления.

Отчет содержит список исполнителей, список сокращений, и список литературы.

1. УТОЧНЕНИЕ ЭЛЕМЕНТНОГО СОСТАВА КОСМИЧЕСКОГО КОМПЛЕКСА ДЛЯ ОБЕСПЕЧЕНИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ МИССИИ

Проект Венера-Д для комплексного исследования Венеры, прорабатываемый в рамках НИР «Венера-Д», включает в себя орбитальный аппарат, посадочный модуль и субспутник. Посадочный аппарат должен спускаться в атмосфере около 1 часа и прожить на поверхности более 2 часов. Орбитальный аппарат должен работать минимум в течение 3 лет на суточной полярной орбите с перицентром около 250 км и апоцентром около 66000 км. В данный момент прорабатывается несколько вариантов орбиты субспутника с периодом 48, 24, 12 для оптимизации совместной работы плазменного комплекса на ОА и СС и проведения эксперимента по радио просвечиванию атмосферы и ионосферы.

Прорабатываемый проект «Венера-Д» нацелен на комплексное исследование поверхности, атмосферы и окружающей плазмы с целью изучения происхождения планеты и эволюции ее климата, необходимого, в частности, для понимания проблем земного климата. Комплекс обеспечивает выполнение поставленных научных задач:

- Состав атмосферы, включая содержание инертных газов и их изотопов, летучих и их изотопов, малых составляющих;
- Состав, строение, микрофизика и химия облаков;
- Тепловой баланс и природа гигантского парникового эффекта ;
- Механизм суперротации и другие особенности динамики атмосферы Венеры;
- Детали строения и химический состав наиболее древних из наблюдаемых на поверхности геологических образований (тессеры и родственные им структуры);
- Элементный состав материала поверхности, включая содержание радиоактивных изотопов; анализ распределения железа по степеням окисления;
- Поиск проявлений современной вулканической, электрической и сейсмической активности Венеры, регистрация сейсмического фона планеты;
- Строение экзосферы, ионосферы, магнитосферы, изучение диссипации атмосферных составляющих.

Предполагается использование ПА типа ВЕГА и модифицированного ОА «Фобос-Грунт». Элементный состав комплекса является оптимальным для запуска в 2018 году.

На предыдущих этапах НИР рассматривался более сложный комплекс, который включал также аэростатные зонды и малые станции, сбрасываемые с АЗ (отчет 2009, 2010, Засова и др. 2009, 2010). В 2011 году было принято решение упростить проект, исключив аэростатные зонды без ущерба для научных задач, которые проект выполняет. Один из ключевых экспериментов на АЗ, МДЛС (Многоканальный Диодный Лазерный

Спектрометр), результаты которого важны для понимания происхождение и эволюции атмосферы Венеры, был перенесен для установки на ПА. Прибор МДЛС-ИСКРА-В измеряет спектры летучих и их изотопов с разрешением 10⁷ и с высокой абсолютной точностью. Для получения столь высокого спектрального разрешения прописывается контур единичной линии в условиях низкого давления (не выше сотни миллибар). Для осуществления этого эксперимента на ПА в систему забора атмосферных проб, которая используется для прибора Хроматограф-Масс-спектрометр, была включена и проработана оригинальная система разрежения атмосферных проб для эксперимента МДЛС. Работая с высоты ~ 64 км и до поверхности, эксперимент дает возможность получения вертикальных профилей измеряемых компонент. Установка МДЛС на ПА позволяет увеличить вес прибора по сравнению с вариантом его установки на баллон, а, следовательно, увеличить число спектральных каналов и количество исследуемых газов.

Идея использования в качестве посадочного аппарата ПА типа Венера-ВЕГА является конструктивной, так как по справке, данной НПОЛ и включенной в отчет 2011 года, сохранилась документация на ПА. На НПОЛ до сих пор работают специалисты, которые участвовали в проектировании и производстве советских ПА. Десять ПА «Венера», начиная с «Венеры 7», успешно сели на поверхность Венеры и проработали там до двух часов. Болен ранние станции «Венера4-6» не достигли поверхности, так как были раздавлены в атмосфере на высоте около 20 км: давление в 100 бар на поверхности Венеры оказалось неожиданным. Схема посадки работала безотказно, так что станция «Венера-9» смогла совершить посадку даже в гористой местности, на склон с уклоном 30° и проработала, передавая информацию в течение 2-х часов.

Проблему представляет отсутствие испытательной базы, Камера Высокого Давления была разобрана в 90-е годы, однако документация и здание, где она существовала, сохранились. Таким образом, КВД может быть восстановлена в рамках выполнения ОКР. Одновременно начата проработка возможности изготовления в ИКИ КВД для испытания отдельных приборов, теплоизоляции и отдельных элементов в условиях их выживания в нижней атмосфере и на поверхности.. Надо отметить, что подобная камера существовала в НИИТП, в 1975 году она была разобрана и передана в ИКИ после перехода в ИКИ сотрудников Б.Е. Мошкина и А.П. Экономова, хотя в ИКИ она не восстанавливалась. В настоящее время разработано ТЗ на изготовление стенда и техническое описание камеры (Раздел 11 настояшего отчета).

Таким образом, миссия «Венера-Д», проработанная для запуска в 2018 году, представляет собой законченный реализуемый проект с современной научной нагрузкой, технологически использующий многократно испытанные элементы миссии, что вызывает

доверие у иностранных коллег в успехе миссии. Комплекс научной аппаратуры включает в себя современные наиболее известные в мире приборы для решения поставленных задач. Приборы предложены известными в мире международными коллективами. Эксперименты направлены на выполнение наиболее ярких и важных научных задач.

Осуществление проекта оставило бы за Венерой термин «русская планета».

В случае запуска миссии в более поздние годы можно проработать включение технологически более сложных элементов миссии – это аэростатные зонды, а также технологический вариант долгоживущей на поверхности станции.

2. УТОЧНЕНИЕ ПРОГРАММЫ ЭКСПЕРИМЕНТОВ НА ЭЛЕМЕНТАХ МИССИИ "ВЕНЕРА-Д"»

2.1 Посадочный аппарат

ПА является основным элементом миссии. Последняя посадка на Венеру была совершена аппаратами ВЕГА в 1985 году(Linkin et al. 1987). Блестящие результаты проекта Венера-Экспресс (Svedhem et al. 2009), которые миссия продолжает получать до настоящего времени, дают ответ на многие вопросы, но они не решают фундаментальных задач происхождения Венеры и эволюции ее климата. Для ответа на эти вопросы необходимы in-situ измерения в нижней атмосфере и на поверхности, в частности, измерения летучих и инертных газов и их изотопов, состава поверхности, включая естественные радиоактивные элементы, степень окисления поверхности (измерения железа по степеням окисления) и др. На ПА Венера-Д установлены приборы, способные решать эти задачи (Засова и др. 2009, 2010, 2011).

2.1.1. Характеристики приборов посадочного аппарата миссии «Венера-Д».

В этом разделе приводится краткая сводка характеристик приборов ПА миссии «Венера-Д». Это соответствующий раздел из отчета 2011 г. без изменений, который мы считаем нужным повторить, для лучшего понимания нижеследующего раздела 4 «Предложения по общей циклограмме работы приборов посадочного аппарата», где изменения есть. Информация приборам предоставлена ответственными ПО исполнителями по экспериментам миссии. Названия приборов. получаемая информация, характер получаемой информации, главные задачи экспериментов и требования по времени работы приведены в таблице 1. Эти данные необходимы для составления предварительной циклограммы работы приборов ПА.

Из таблицы 2.1 следует, что анализ измерений приборов ПА должен внести существенный вклад в изучение химического состава и физического состояния атмосферы (состав малых компонент и аэрозолей, турбулентности атмосферы и т.д.), в определение состава основных породообразующих элементов грунта, в идентификацию минеральных фаз, содержащих железо, в выявление и генетическую интерпретацию элементов рельефа и микрорельефа, в исследование уровня сейсмической активности планеты.

Для изучения состава основных породообразующих элементов грунта Венеры служит гамма спектрометр Агнесса. Для исследования минералогических фаз железа будет использоваться миниатюризированный Мессбауэровский спектрометр 2А. Для изучения химического состава атмосферы требуются данные хроматографа ХМС-П и многоканального диодно-лазерного спектрометра ИСКРА-В, которые дают информацию о составе малых компонент атмосферы, а для изучения аэрозоля атмосферы необходимы данные прибора НЕФАС.

Прибор	Получаемая	Характер получаемой	Главные задачи	Требования по времени
	информация	информации	эксперимента	работы
Гамма спектрометр	Измеряет спектр	Информация с прибора	Определение состава	Максимально возможное.
Агнесса	наведенного излучения	представляет собой	основных	Начальный интервал
	поверхности Венеры под	временную развертку	породообразующих	измерений 5 – 10 мин. в
	воздействием импульсов	спектров гамма-излучения	элементов	пассивном режиме, интервал
	нейтронов с энергиями 14	в энергетическом	поверхностного слоя	активной работы генератора не
	МэВ, также излучения	диапазоне от 100 кэВ до	Венеры в точке посадки	менее 10 мин. и
	естественных	10 МэВ, приведенную к	и также измерение	заключительный интервал 5 –
	радиоактивных элементов	моментам излучения	содержания	10 мин. измерений в пассивном
	в веществе	импульсов нейтронов.	радиоактивных	режиме. Прибор также должен
	поверхностного слоя		изотопов K, U и Th.	включаться на этапах перелета
	планеты.			и спуска в атмосфере.
Хроматограф ХМС-П	На этапе спуска ПА в	Информация о	Измерение	Непрерывная работа
	атмосфере Венеры	химическом составе	химического состава	комплекса на этапе спуска ПА
	комплекс измеряет	атмосферы, о примесных	атмосферы и вещества	для получения профиля
	химический состав	компонентах и их	поверхности на	атмосферы, т.к. время
	атмосферных газов и	распределении по высоте,	посадочном аппарате.	измерительного цикла
	аэрозольной компоненты.	о составе аэрозольной		составляет до 5 мин.,
	После посадки измеряет	компоненты, о		расстояние по высоте между
	химический состав	химическом составе		точками забора может быть
	образца грунта,	грунта, включая		более 10 км. После посадки
	доставленного внутрь	микроэлементы.		время анализа определяется
	приборного отсека ПА, и			временем забора грунта и его
	по возможности,			вакуумированием.
	продолжает измерения			
	состава атмосферы.			

Таблица 2.1 Характеристики приборов посадочного аппарата миссии «Венера-Д» и требования по времени их работы.

Миниатюризированный	Температурно-	Измерение	Идентификация	Необходимое время
Мессбауэровский	зависимые	относительного	минеральных фаз,	измерений – 30 мин.
спектрометр 2А	мессбауэровские спектры	содержания фаз, имеющих	содержащих железо.	Максимальное время не
	образцов грунта.	в своем составе Fe.		ограничено. Увеличение
		Измерение распределения		времени приведет к
		Fe по степени окисления.		улучшению статистики и
		Одновременное		повысит точность
		измерение XRF спектра		идентификации и
		(исследование		количественного определения
		элементного химического		железосодержащих фаз.
		состава).		Уменьшение времени - только
				для образцов с высоким
				содержанием Fe.
Телевизионный	Получает изображения	Съемки (стерео)	Выявление и	Съемка панорамными
комплекс	поверхности на этапе	поверхности Венеры с	изучение элементов	камерами и камерами высокого
	спуска ПА (исследование	полем зрения 30-45° и	рельефа размером от	разрешения может быть
	оптических свойств	угловым разрешением	десятков до сотен	проведена в первые минуты
	нижних слоев атмосферы)	~0.0005 радиан в процессе	метров (на этапе	после посадки. Далее
	и во время его работы на	посадки, начиная с высот	спуска), а также	проводится передача
	поверхности	в несколько км;	элементов	информации, которая может
	(информацию о ходе	панорамная (стерео)	микрорельефа	проводиться в течение всего
	посадки - «репортажная	съемка с поверхности;	размером от	времени жизни КА. При
	съемка»).	получение детальных	сантиметров до метров	возможности цикл(ы) съемки-
		(стерео) изображений с	и строения	передачи информации можно
		разрешением лучше 0.2	микроструктуры	повторить для выявления
		MM.	поверхности грунта (на	изменений.
			поверхности).	

Измеритель	Измеряет in-situ	Прибор измеряет	Изучение состава	Желателен непрерывный
сернистых компонент	содержание сернистых	содержание сернистых	малых компонент	режим работы с периодичностью
разреженной	компонент и ряда других	компонент и других	атмосферы Венеры	во времени проведения
атмосферы Венеры:	газовых составляющих	газовых составляющих	для решения задач	отдельных измерений ~13
многоканальный	атмосферы Венеры (из ряда:	атмосферы Венеры на	атмосферной	минуты, что позволит получить
диодно-лазерный	SO2, CO, COS, H2O, NO2,	этапе снижения ПА	динамики,	подробные сведения, как о
спектрометр ИСКРА-В	HCl, HF и других) на этапе	(анализ содержания	атмосферной	кратковременных, так и о
	снижения ПА от момента	компонент	фотохимии, и	долгосрочных вариациях
	сброса его защитной	венерианской	изучения процессов,	содержания атмосферных газов.
	полусферы на высоте около	атмосферы).	происходящих на	Возможна работа прибора
	65 км вплоть до касания		границе атмосфера-	отдельными сеансами
	поверхности Венеры и по		поверхность.	длительностью по ~1020 минут.
	возможности потом.			
Метеокомплекс	Данные по временным	На основе	Изучение физики	Желательно непрерывное
	зависимостям температуры,	полученных данных	атмосферы Венеры,	время измерений в течение всего
	давления, градиента	можно будет	включая проблемы	этапа работы ПА
	температуры и ускорения, по	определить	турбулентности в	
	траектории спуска начиная с	коэффициент	облачном слое с	
	120 км и на поверхности.	диссипации энергии	помощью модели	
		для облачного слоя и	переноса энергии.	
		построить модель		
		переноса энергии в		
		облачном слое.		
НЕФАС	Измеряет уровень	Измерение	Исследование	На этапе спуска ПА необходим
	интенсивности рассеянного	характеристик упругого	аэрозоля атмосферы	непрерывный режим работы.
	зондирующего излучения из	рассеяния	Венеры.	полный цикл измерении - 1-2 сек.,
	некоторого объема	микрочастицами		прописывание аэрозольного профиля
	атмосферы и подсчитывает	атмосферы		при спуске аппарата с разрешением
	число аэрозольных частиц	зондирующего света.		20-80 м. Желательно продолжить
	проходящих через счетный			измерения в течение нескольких
	объем.			минут после посадки.

Сейсмометр С-ВД	Прямым и	Информация по	Исследование	Желательно проведение
	модуляционным методом	сейсмической волновой	уровня сейсмического	непрерывных измерений в
	непрерывно	картине регионального и	шума на планете;	течение всего времени
	регистрируются	при благоприятных	существования	функционирования
	сейсмические колебания в	условиях - планетарного	региональной и	посадочного модуля.
	диапазоне от 60-70 Гц до	масштаба.	глобальной	
	3 часов и с амплитудой,		сейсмичности;	
	превышающей шум		собственных колебаний	
	канала регистрации 10(-9)		Венеры; мощности	
	– 10(-10) см по		коры в регионе	
	смещению.		посадки.	
Система	Получает от научных	Информация от	Прием информации	Необходимо непрерывное
информационного	приборов научные данные	приборов поступает в	от приборов; временное	постоянное время работы.
обеспечения (СИО-ПА)	и технологическую	виде «пакетов» данных.	хранение; передача в	
	информацию.	Прибор СИО дописывает	радиоканал; передача	
		текущее время	команд в приборы от	
		поступления «пакета» и	бортового комплекса	
		идентификатор прибора,	управления; выдача	
		от которого поступила	меток (кода) времени	
		информация.	научным приборам;	
			выдача информации о	
			состоянии КА.	

2.1.2 Предложения по общей циклограмме работы приборов посадочного аппарата.

В состав КА миссии «Венера-Д» входит орбитальный блок, спускаемый аппарат и субспутник. Предполагаемое время работы спускаемого аппарата на поверхности планеты около трех часов. За это время аппарат должен передать на Землю максимум возможной информации.

На основании анализа информации, предоставленной ответственными исполнителями по приборам (см. таб. 2.1) в 2011 г. была составлена предварительная циклограмма работы приборов посадочного аппарата миссии (см.рис.2.1). Главная «Венера-Д» задача разработки циклограммы комплексирование работы приборов с учетом ограничений по времени их работы и извлечения максимума информации. Составленная в 2011 г. циклограмма обсуждалась на рабочем совещании в ИКИ РАН в декабре 2011, где участниками совещания было предложено увеличить возможное время работы приборов. Это было сделано в отношении приборов: гамма-спектрометр, хроматограф ХМС-П, миниатюризированный Мессбауэровский спектрометр. Для телевизионного комплекса увеличено количество включений, а для многоканального диоднолазерного спектрометра ИСКРА-В непрерывные измерения на этапе спуска ПА остались без изменений, а периодические измерения в начале каждого часа были заменены на частые включения в течение всего возможного времени жизни ПА (см. рис. 2.2). Этот вариант циклограммы (см. рис. 2.2), как и прошлогодний, является предварительным, т.к. не учитывает возможную конкуренцию по энергопотреблению приборов и по их информативности.

прибор	спуск	1-й	2-й	3-й
		часы	работы	
Гамма спектрометр				
"ХМС-П", хроматограф				
Миниатюризир. Мессбауэр. спектрометр				
Телевизионный комплекс				
МДЛС «ИСКРА-В».				
Метеокомплекс				
"НЕФАС"				
Сейсмометр С-ВД				
(СИО-ПА) Система информационного обеспечения				

Рисунок 2.1. Предварительная циклограмма работы приборов миссии «Венера-Д (версия 2011 г.).

прибор	спуск	1-й	2-й	3-й
		часы	работы	
Гамма спектрометр				
"ХМС-П", хроматограф				
Миниатюризир. Мессбауэр. спектрометр				
Телевизионный комплекс				
МДЛС «ИСКРА-В».				
Метеокомплекс				
"НЕФАС"				
Сейсмометр С-ВД				
(СИО-ПА) Система информационного обеспечения				

Рисунок 2.2. Предварительная циклограмма работы приборов миссии «Венера-Д» (версия 2012 г).

2.2.Орбитальные аппараты (ОА и СС). Научная аппаратура. Предварительная программа работы

<u>Орбитальный аппарат</u> должен работать на полярной орбите. Комплекс научной аппаратуры включает в первую очередь комплекс спектрометров, от ультрафиолетовой области и до миллиметрового диапазона, которые дают возможность исследовать атмосферу от поверхности до 170 км высоты и поверхность в окнах прозначности между полосами поглощения CO₂ в ближней ИК области на ночной стороне, и плазменный комплекс. Подробное описание экспериментов содержится в отчетах за 2009, 2010 и 2011 годы (Засова и др. 2009, 2010, 2011).

НА на орбитальном аппарате включает новые приборы, как картирующий УФспектрометр (Bellucci et al. 2002), миллиметровый радиометр; Фурье-спектрометр с высоким разрешением на ближнюю ИК область, ИК – фурье спектрометр (Formisano et al. 2006), прибор важный для понимания динамики атмосферы, установленный на Венере Экспресс, но неработающий из-за отказа сканера; модернизированные эксперименты, которые работали успешно работали на советских миссиях, на Венере Экспресс, очевидна их эффективность, а также понятны пути модернизации – это картирующий спектрометр в ближнем ИК, широкоугольная камера с фильтрами от УФ до ближнего ИК, эксперимент по двухчастотному радиопросвечиванию. Комплекс плазменных приборов позволит изучать ионосферу, магнитосферу, диссипацию не только ионов, но и нейтральных компонентов атмосферы, изучать межпланетную среду на трассе перелета. Состав аппаратуры скомплектован основываясь на предыдущем опыте исследования Венеры. Приборы будут давать взаимодополняющую информацию.

Несмотря на впечатляющие результаты орбитера Венера Экспресс, многие вопросы, которые можно решить с орбитального аппарата, остаются нерешенными, в других вопросах – стало понятно в каком направлении надо изменить прибор и какие новые научные задачи можно поставить. Один из основных приборов Венера Экспресс – Планетный фурье-спектрометр (Formisano et al. 2006) не работает из-за отказа сканера. Он должен был решить широкий круг задач, включая мониторинг термического строения средней атмосферы, исследования термических приливов (Zasova et al., 1995, 2007), которые по современным представлениям поставляют энергию на поддержание суперротации. Одна из загадок Венеры – природа «неизвестного» УФ (0.32-0.45 мкм), поглотителя, который поглощает 50% всей поглощенной Венерой солнечной энергии в верхнем облачном слое (58-68 км), что приводит к генерации термических приливов (Zasova et al. 1981, 1993). Венера Экспресс не имеют аппаратуры для решения этой проблемы. Эксперимент UVMAS на борту Венеры-Д имеет одну из задач отождествление «неизвестного» УФ поглотителя и т.д. (Bellucci et al. 1998, 2002)

Основное требованием к программе работы приборов на борту орбитального аппарата – это непрерывная работа в течение максимально длительного времени. Она зависит от принятия окончательной орбиты, от ориентации аппарата в разные моменты времени. Разные эксперименты могут требовать разной ориентации, например: надирная мода – основная ориентация объекта, в ней работает большинство приборов, мода наблюдения солнечных и звездных затмений (эксперимент СПИКАВ), лимбовая мода наблюдений также используется большинством эксперментов на ОА. Для экспериментов по радиопросвечиванию (ОА – СС) необходимо определенное взаимное положение орбитального аппарата и субспутника и соответственно для радиопросвечивания ОА – Земля, ОА должен заходить с точки зрения наземного наблюдателя за диск планеты и т.д. Поэтому циклограмма работы приборов на ОА представляет собой более сложную задачу и будет изучена детально на следующих этапах НИР. В таблице 2.2 мы приводим научные задачи экспериментов, необходимые измерения для обеспечения выполнения научных задач и предварительные требования к программе измерений.

<u>Субспутник</u> - второй небольшй орбитер, включение которого предполагается в состав миссии, нацелен на решение плазменных задач, а также на изучение строения атмосферы при радиозатменном эксперименте орбитер – субспутник. Проведение одновременных измерений на спутнике и субспутнике позволяет разделить пространственные и временные вариации и исследование процессов у Венеры при одновременном мониторинге солнечного ветра.

На субспутнике установлен плазменный комплекс, (таблице 2.2) - это приборы (8-11) и эксперимент по радиопросвечиванию (6). Предложения по работе экспериментов приведены также в таблице 2.2.

Один их вариантов работы плазменного комплекса СС – это совместные исследования с плазменным комплексом ОА. Алгоритм совместной работы будет зависеть от орбит обоих спутников. В настоящее время рассчитаны 3 орбиты субспутника с периодами 12, 24 и 48 часов.

Кроме того субспутник проводит по возможности долговременные плазменные наблюдения, когда ориентация ОА не позволяет проводить совместные с СС наблюдения.

Магнитосфера Венеры, в отсутствии у планеты собственного сильного магнитного поля, представляет собой тип «наведенной» магнитосферы, и формируется при прямом взаимодействии солнечного ветра с ионосферой/атмосферой планеты, что принципиально отличает ее от земного аналога. Постановка плазменного эксперимента на двух (нескольких) спутниках в окрестности Венеры позволяет впервые исследовать физические процессы в «наведенной» магнитосфере при одновременном мониторинге условий в солнечном ветре, а также разделить пространственные и временные вариации плазмы, электрических и магнитных полей в ней, что невозможно в случае измерений на одном космическом аппарате.

<u>Перспективное предложение по радиопросвечиванию</u>: вариант радиопросвечивания, когда производится излучение мощных когерентных сигналов наземным передатчиком и прием на борту ОА и СС универсальным трехчастотным (L, S, X) бортовым приемником.

Наземная излучающая антенна направляется на планету, формируется радиополе диаметром более 100 тыс. км, обеспечивая возможность приема сигналов всеми ОА

вблизи планеты. Длительность одного ceanca, начинающегося при заходе OA за планету и заканчивающегося после выхода OA из-за планеты, составляет 1 час.

Одновременно можно проводить 5 разных экспериментов радиозондирования, не мешая работе других приборов. Благодаря высокой мощности излучения будут получены новые сведения об ионосфере, атмосфере и поверхности Венеры.

- При облучении с Земли проводятся измерения межпланетной плазмы на двух разнесенных трассах Земля→ОА и Земля→CC
- 2) Двухчастотное радиопросвечивание ионосферы
- 3) Двухчастотное радиопросвечивание атмосферы
- 4) Бистатическая локация и приповерхностная атмосфера
- 5) Радиолокация поверхности

	Научная аппаратура	Научные задачи	Измеряемые параметры	Предварительная программа работы
1	Эксперимент по солнечным и звездным просвечиваниям	Вертикальная структура атмосферы и термосферы, верхняя дымка, La. H = 70-160 км: вертикальные профили плотности, температуры SO ₂ и SO, HDO, H ₂ O, CO, HCL, HF и др., над облаками	Спектры при наблюдении Солнечных и звездных 2.2-4.4 мкм, Δλ =2.4 нм и 118 – 320 нм, Δλ =1.3нм	Наблюдения в режиме солнечных затмений необходимо вести в основном вблизи перицентра. Приоритетными будут области низких широт северного полушария и все широты южного полушария, не захваченные наблюдениями КА «Венера-Экспресс». За несколько минут до затмения инструмент должен быть включен (предварительное охлаждение детектора), и КА должен быть сориентирован так, чтобы оптическая ось спектрометров была направлена на Солнце. После того, как направление на Солнце установлено, аппарат должен оставаться в инерциальной ориентации несколько минут. Точность наведения должна быть не менее 0.02°, а стабильности порядка ~0.01°/с в самом консервативном случае. В наридном режиме спектрометр будет участвовать в наблюдениях наряду с другими экспериментами.
	Камера для Мониторинга Венеры, КМВ	Изучение динамики облаков (УФ); исследования пространственного и вертикального распределения УФ-поглотителя (SO ₂ и неизвестный поглотитель). Получение изображений поверхности на ночной стороне в окне прозрачности 1 мкм.	Изображения Венеры в областях спектра0.285, 0.365, 0.500 ,1мкм	Программа измерений КМВ (и многие ее параметры) целиком определяется орбитой спутника вокруг планеты. В случае 24-час вытянутой орбиты 250х66 000 км, аналогично Venus Express. КМВ должна работать на всех участках орбиты. В апоцентре орбиты и по мере приближения КА к Венере камера будет картировать полный диск планеты с пространственным разрешением от 25 до 15 км/пикс. Съемка должна производиться со скоростью 1 кадр каждые 30 мин, что соответствует смещению облачных деталей на несколько пикселей. Ближе к перицентру, наблюдаемый участок диска уменьшиться до ~3600 км, что соответствует пространственному разрешению от 5 до 15 км/пикс. Наблюдаемый участок диска уменьшиться до ~3600 км, что соответствует пространственному разрешению от 5 до 15 км/пикс. Наблюдения вблизи перицентра с расстояний менее 10 000 км соответствуют размеру изображения 3000–70 км и пространственному разрешению от 3.5 до 0.1 км/пикс. Однако, наблюдения будут проводиться в сравнительно узких полосах. Необходимо предусмотреть специальные сеансы сравнения двух полюсов планеты.

Таблица 2.2. Эксперименты на ОА: научные задачи, измеряемые параметры и предварительная программа работы.

	Спектрометр -	Н = 0 - 100 км. Температура,	Интерферрограм	Прибор работает и на дневной, так и на ночной стороне в надирной моде
	интерферометр	динамика, строение и состав	мы. Спектры в	наблюдений. Собственный сканер позволяет наводить прибор на интересующие области
	ПФС-ВД	облаков, малые составляющие	области 0.9-45	планеты. В надирном режиме спектрометр будет участвовать в наблюдениях наряду с
		атмосферы, нетепловые эмиссии,	МКМ	другими экспериментами. Измерения нужно вести непрерывно, всегда, когда
		поверхность. Исследование		положение КА на орбите и его ориентация позволяют наблюдать планету с требуемым
		термических приливов и		пространственным разрешением, т.е. вплоть до апоцентра. Выбор сетки сканирования и
		периодичностей в температурных		спектрального разрешения, а так же выбор работающих приёмников изменяется по
		полях, термическом ветре, в		командам.
		верхнем облачном слое для		Длинноволновый канал ПФС-ВД (дневная и ночная сторона)
		понимания поблеем суперротации		Осуществляет долговременный непрерывный глобальный мониторинг:
				 трехмерных температурных полей в диапазоне высот 55 – 100 км
				 строения и состава верхнего облачного слоя
				- малых составляющих, SO ₂ , H ₂ O в области высот 55 – 75 км
				 уходящего теплового потока (тепловой баланс)
				Коротковолновый канал ПФС-ВД (наблюдения дневной стороны):
				Осуществляет измерение:
3				– оптических параметров аэрозоля в верхнем облачном слое из наблюдений при
				различных зенитных и фазовых углах (мода измерения фазовой функции)
				- содержания малых составляющих в надоблачной атмосфере и в области верхней
				границы облаков.
				- эмиссии в колебательно-вращательной полосе O ₂ 1.27 мкм (лимбовые измерения)
				Коротковолновый канал ПФС-ВД (ночная сторона):
				Производит долговременный мониторинг :
				- состава подоблачной атмосферы (H ₂ O, H ₂ S, CO, OCS, HCl, HF)
				- вариаций оптической толщины облаков
				- температурного градиента в области высот 0 -10 км и температуры поверхности
				- поверхности в окнах прозрачности около 0.9- 1 мкм
				- нетепловых эмиссий колебательно-вращательной полосы O ₂ 1.27 мкм, полос
				Меинеля ОН и др (в надирнои и лимоовои модах).
				Приоор не работает на Венере-Экспресс.

УФ-картирующий	1).Картирование содержания	Прибор измеряет спектральную	Прибор работает как на дневной, так и на ночной стороне (от
спектрометр (0.19 –	SO ₂ и SO в диапазоне 0,19–0,32	плотность интенсивности излучения	этого зависит мода наблюдений: 1-3 на ночной стороне, 4 – на
0.50 мкм)	мкм и их корреляции с УФ	в диапазоне длин волн от 190 до 490	ночной). Работает как в надирной, так и лимбовой модах
	поглотителем.	нм со спектральным разрешением не	Измерения содержания SO и SO ₂ . $\Delta\lambda = 0,4$ нм
	2).Картирование	менее 0,4 нм и скважностью не	Спектральные диапазоны и соответствующее количество каналов:
	"неизвестного" источника УФ-	менее 0,4 нм с формированием	$0,20 < \lambda < 0,23$ мкм
	поглощения в диапазоне 0,32-	изображения в каждой точке спектра	$0,28 < \lambda < 0,32$ мкм
	0,49 мкм		$0.23 < \lambda < 0.28$ мкм
	3).Строение облаков.		$0.35 < \lambda < 0.50$ мкм
	Исследование динамики		Поле зрения: 1,1°; 2,3°; 3,6°; 4,6°; 5,7°.
	атмосферы путем измерения		Угловое разрешение: 0,4; 0,8; 1,2; 1,6; 2,0 мрад. Время экспозиции:
	скоростей ветра по движению		1 c.
	деталей на изображениях (0,19-		Размерность данных (пространство х спектр): 50 x 200.
	0,49 мкм).		2) "Неизвестный" УФ-поглотитель.
	4).Ночные свечения		Наилучшее спектральное разрешение: $\Delta \lambda = 0,4$ нм
	атмосферы: NO, CO, O ₂ .		Спектральные диапазоны и соответствующее количество каналов:
			$0.30 < \lambda < 0.50$ мкм
			Поле зрения 3.6°. Угловое разрешение: 2 мрад
			Время экспозиции 1 с. Размерность данных: 25 х 400
			3) Строение облаков и динамика
			Наилучшее спектральное разрешение: $\Delta \lambda = 40$ нм
			Спектральные диапазоны и соответствующее количество каналов:
			0,22 < λ < 0,42 мкм
			Поле зрения: 5.7°. Угловое разрешение: 0,4 мрад
			Время экспозиции: 0,1 с. Размерность данных: 220 x 5
			5) Наблюдения на ночной стороне
			$0.19 < \lambda < 0.25$ мкм
			Поле зрения 5,7°. Угловое разрешение 1,2 мрад,
			Время экспозиции 1–10 с. Размерность данных: 50 х 100
			5) Наблюдения свечений на ночной стороне
			$0,19 < \lambda < 0,25$ мкм
			Поле зрения 5,7°, Угловое разрешение 1,2 мрад, Время
			экспозиции 1–10 с, Размерность данных: 50 х 100

	Радиометр	Определение	высотных,	Радиоизмерения в области	0-90 ГГц (0.3-3 см)	При движении по орбите, аппарат ориентируются таким
	миллиметрового	пространственных и	и временных	– три канала, при разных уг	лах визирования	образом, чтобы линия сканирования прибора проходила
	диапазона)	вариаций рас	спределений		-	по области диска Венеры, заданной программой
		температуры и обил	лий газовых			измерений. В части орбиты, на большом удалении, когда
		примесей молекул І	H ₂ SO ₄ и SO ₂			поле зрения больше видимого диска Венеры, прибор
		в диапазоне высот	т 20-60 км.			регистрирует интегральное излучение диска и
		Исследование в подо	облачных			сканирования не производится. При этом, однако, в
						заданные моменты времени, производится калибровка,
						при которой рупорные антенны наводятся
						сканирующими зеркалами попеременно на встроенный
						калибратор и "темное небо". Рупорная антенна каждого
						канала имеет сканирующее зеркало, плоскость которого
						находится под углом 45° к его оси, а вращение
						производится вокруг оси рупора.
						Прибор располагаются таким образом, чтобы в
-						диаграмму направленности антенн (±60 градусов от
)						главной оси визирования) не элементы конструкции КА и
						других присоров. предполагается, что во время
						эксперимента КА ориентирован таким образом, что
						плавная ось приоора направлена в надир.

	1)"VROE	1)Одновременно	1)Измеряется амплитуда и фаза сигнала,	1)Эксперимент "VROE" проводится с использованием
	400 и 800 МГц	определяется концентрацию	прошедшего сквоь атмосферу	орбитального аппарата, на котором устанавливается
		свободных электронов в		передатчик; и субспутника, на котором устанавливается
	2)Эксперимент по	ионосфере и концентрация	2)Радиосигнал (амплитуда, фаза,	приемник. Эксперимент проводится в ситуации, когда луч
	двухчастотному	нейтрального газа на одной и	частота) от орбитера прошедший и	между орбитальным аппаратом и субспутником проходит через
	радио	той же высоте, т.е. прямое	отраженный атмосферой и поверхностью	атмосферу. В эксперименте передатчик, установленный на
	просвечиванию (в	сравнение состояния	в двух диапазонах L и X (S)	орбитальный модуль, излучает два когерентных сигнала;
	L-и X-диапазонах)	ионосферы и термосферы и		ориентировочно на частотах 400 и 800 МГц. Приемник,
		нижней атмосферы.		установленный на субспутник, принимает эти сигналы, и
		2) Изучение межпланетной		регистрирует амплитуды и разницу фаз зондирующих
		среды; профилей электронной		сигналов.
		концентрации в ионосфере;		Схема эксперимента зависит от баллистической схемы, в
		профилей температуры,		частности от расчетной дальности зондирования.
		давления, концентрации паров		Предварительноприборы разработаны на совместную работу на
		серной кислоты в атмосфере;		расстоянии до 60000 км. Отношение сигнал/шум на
		рассеивающих свойств		максимальной дальности составляет 23 дБ, точность
6		поверхности, диэлектрической		определения фазы – не хуже 3 градусов.
0		проницаемости и плотности		2) При движении по орбите спутника Венеры ОА ВЕНЕРА-
		грунта; околосолнечной плазмы		Д должен заходить с точки зрения наземного наблюдателя за
		при заходе Венеры за Солнце		диск планеты. Для анализа динамики ионосферы и атмосферы
				необходимо, чтобы радиозаходы и радиовыходы ОА
				наблюдались на каждом витке спутника в течение 23 месяцев
				или больше.
				Для обеспечения высокой мощности принимаемого сигнала
				оптимальными сезонами радиопросвечивания являются такие
				периоды, когда Венера находится на близком расстоянии от
				Земли. Например, для Венеры-Д оптимальные сезоны
				радиозаходов возможны в самом начале миссии, сразу после
				выхода ОА на орбиту, следующий через 1.5 года после выхода
				на орбиту, когда Венера начнет сближаться с Землей и т.д.
				Показано, что если осуществляется прием бортовым
				приемником когерентных сигналов с наземного комплекса,
				информативность экспериментов радиозондирования
				значительно увеличивается.

	ИК-картирующий	H= 0 -100 km, картирование	Спектр 0.23 – 5 мкм с разрешением 2.4 нм	Спектрометр работает на дневной и на ночной
	спектрометр (0.9 - 5	распределения малых		стороне. В области 0.23 – 3 µm на дневной стороне
	мкм)	составляющих, облаков в		наблюдается облачный слой и надоблачная атмосфера,
		разных спектральных		также как и 3-5 мкм на дневной и ночной стороне. В
		диапазонах, поверхности,		области 1-3 мкм на ночной стороне наблюдаются пики
		нетепловых эмиссий O ₂ , OH,		излучения нижней атмосферы и поверхности, прошедшие
		изучение зональной		в окнах прозрачности и нетепловые излучения верхней
		суперротации на разных		атмосферы. Картирующий спектрометр имеет
_		высотах по движению облачных		возможность проводить наблюдения из апоцентра, а
7		деталей, SS-AS циркуляции в		также получать изображения дневной и ночной стороны
		нижней термосфере,		планеты с участков орбиты вплоть до I часа до
		термическая структура		перицентра. Получение карт из перицентра невозможны
		атмосферы на ночнои стороне.		по причине оыстрого движения диска планеты в поле
				зрения приоора. Карты получаются в надирной моде
				измерении. Лимоовая мода измерении, осуществляется с
				участков ороиты олиже к перицентру. Расота
				спектрометра осуществляется с разными экспозициями в
				зависимости от конкретной научной задачи.
	Магнитометр ФМ-В	Измерения	Измерения в диапазоне +\-1000нТ.	Магнитометр работает постоянно, с заланной по команле
	·····F	квазипостоянного магнитного	Частотный диапазон 0-16 Гц, чувствительность	скоростью измерений
		полл , Три компоненты	– 0.01нТ.	1 1
		индукции магнитного поля на		
		трассе перелета от Земли до		
		Венеры и в окрестности Венеры		
0		с борта орбитального аппарата		
8				

	M C	M		II v
	Монитор Солнечного	мониторинг основных параметров	а)Полныи поток ионов	Изучение пространственно-временнои динамики
	ветра	солнечного ветра (или плазмы магнитослоя) с	плазмы 5*10° до 1*10°° см ² с	структур межпланетной среды проведится на этапе
	БМСВ-В	рекордно высоким временным разрешением:	б) Два угла прихода потока	перелета, а также на тех частях траектории
		переносной скорости(величины, и	ионов в пределах от нуля до +/-	орбитального аппарата, которые будут находиться
		направления), ионной температуры и	40 град.от оси прибора.	достаточно далеко снаружи магнитосферы
		плотности; измерение энергетического	в) Энергетическое	Венеры.При этом необходимо обеспечить
		спектра потока ионов в диапазоне 0.2-4.0	распределение потока ионов в	ориентацию прибора его главной осью на Солнце
		кэВ.	пределах 0.2 – 4.0 кэВ.	с точностью не хуже 10 град. как на участке
			г) Переносная скорость	перелета, так и на орбитах вокруг Венеры.
			потока плазмы в пределах от	Возможно, что для этого придется поставить
9			200 до 850 км/с.	прибор на раму солнечной панели, как это уже
			д) Ионная (изотропная)	сделано в проекте «СПЕКТР-Р». Измерения с
			температура в пределах от 1 до	прибором БМСВ-В желательно производить
			100 эВ.	практически непрерывно во все время активного
			е) Плотность плазмы в	функционирования аппарата.
			пределах от 0.1 до 200 ч./см ³	
			Произволятся	
			одновременные измерения	
			потока ионов плазмы.	
			выполненных с помошью	
			набора датчиков	
	Панорамный	Прибор предназначен для исследования	Проволятся измерения ионов	Проволится корпускулярная диагностика, которая
	плазменный	процессов взаимодействия солнечного ветра	(с разделением по массам.	основана на измерениях распределения заряженный
	анализатор	с Венерой, а именно:	электронов и нейтральных	частии в пространстве скоростей. Измерения впроволятся
	Ариес-В	-характеристики аккрешионной	частиц.	в окрестности Венеры
	L	магнитосферы, образующейся в результате	Измерение 3-мерной	Необхолимо провеление измерений в возможно
		захвата экзосферных ионов потоком	функции распрелеления и	более широких лиапазонах планетоцентрических
10		солнечного ветра	массового состава ионов 30 эВ –	расстояний, углов относительно линии планета-Солние.
10		- структура ударной волны и влияние	5 кэВ	и в различных условиях в солнечном ветре необхолимо
		атмосферных ионов на образование уларной	- 1021	провеление измерений в возможно более широких
		волны (для вытянутой орбиты)		проведение измерении в возможно сонее широким
		- процессы захвата экзосферных ионов и		относительно линии планета-Солние и в различных
		образование пограничного слоя		усповиях в сопнечном ветре Преплоитительная орбита -
				условнях в солнечном встре. предночительная оронта -
		- структура границы аккреционной		эллиптическая с перицентром 300 км и апоцентром 2-3
	м т У У У У У У Ч Ч Ч Ч Ч Ч Ч Ч Ч У У У Ч Ч Ч У	магнитосферы и процессов образования гонкой границы - различные типы плазмы (населения) в квосте магнитосферы и процессы их ускорения - потери атмосферы Венеры, индуцированные солнечным ветром, значение массового обмена между солнечным ветром и атмосферой Венеры. - процессы в солнечном ветре при измерениях на трассе перелета и на орбите Венеры (для вытянутой орбиты).		радиусов, с наклонением плоскости орбиты к эклиптике более 45 ⁰ и линией апсид с наклонением к эклиптике ~ 30 ⁰ . Желательно проведение непрерывных измерений вдоль всей орбиты, хотя допускается работа со скважностью, но при обязательном покрытии разных высот и углов относительно линии планета-Солнце. Для анализа данных необходимы одновременные измерения магнитного поля Предпочтительная орбита - эллиптическая с перицентром 300 км и апоцентром 2-5 радиусов, с наклонением плоскости орбиты к эклиптике более 45 ⁰ и линией апсид с наклонением к эклиптике ~ 30 ⁰ .
--	---	--	---	--
Анализ спе протонов и электронов АСПЕКТ-Н	ектров I 1 3 3, 6 3 0 4 5 6 7 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	Измерение спектров энергичных протонов и электронов (энергии 40-1000 кэВ) с высоким временным и энергетическим разрешением Определение тонкой временной и энергетической структуры пучков, возникающих в ходе транзиентных процессов ускорения ионов на разрывах в солнечном ветре, при взаимодействии ветра с планетной плазменной оболочкой	Протоны 20-1000 кэВ Электроны 20-400 кэВ	Измерения на траектории перелета космического аппарата проекта «Венера-Д» - длительные постоянные измерения в солнечном ветре на трассе перелета и на орбите Венеры в зоне взаимодействия ветра и планеты. Параметры эксперимента: Диапазон энергий протонов: 20-1000 кэВ Диапазон энергий электронов: 20-400 кэВ Количество направлений измерений: 2 на каждый тип частиц (всего четыре детектора). Скорость снятия спектров: 1 раз в секунду (или в 0.5 секунды) Количество отсчетов в спектре энергий: 64 или 128 Тип детектора: ППД с фильтрами (требует уточнения). Толщина детекторов: 300 мкм (для электронов), 100- 150 мкм (для протонов). Геометрический фактор: 0.1-0.5 см ² стер (требует уточнения).

3. УТОЧНЕНИЕ РАЙОНОВ ПОСАДКИ ПА НА ПОВЕРХНОСТЬ ВЕНЕРЫ С УЧЕТОМ БАЛЛИСТИЧЕСКОЙ ДОСТИЖИМОСТИ ЭТИХ РАЙОНОВ ДЛЯ КОНКРЕТНЫХ ДАТ ЗАПУСКА, ВАЖНЫХ ДЛЯ БЕЗОПАСНОЙ ПОСАДКИ ХАРАКТЕРИСТИК РЕЛЬЕФА И ОЖИДАЕМОГО ХИМИКО-МИНЕРАЛОГИЧЕСКОГО СОСТАВА МАТЕРИАЛА ПОВЕРХНОСТИ

Согласно техническому заданию договора №05-2012, НТО «Венера-Д-ГЕОХИ-2012» должен решать следующие задачи:

- Уточненный выбор районов посадки СА на поверхность Венеры с учетом баллистической достижимости этих районов для конкретных дат запуска, важных для безопасной посадки характеристик рельефа и ожидаемого химико-минералогического состава материала поверхности;
- Уточнение циклограммы работы приборов спускаемого аппарата с попыткой оптимизации объема и качества получаемой научной информации (обсуждается в Главе 2).

Тессера представляет собой сложно дислоцированную местность (рис. 3.1), открытую и относительно полно охарактеризованную при анализе результатов экспедиции "Венера-15/16" [Барсуков и др., 1984, 1986; Суханов, 1986].

Структурный рисунок тессеры резко отличается от всех других типов местности Венеры и образован пересечениями нескольких наборов тектонических структур [Bindschadler and Head, 1991; Sukhanov, 1992]. Общая площадь тессерной местности составляет примерно 8% поверхности Венеры; крупные тессерные регионы, окруженные более мелкими массивами, встречаются в виде обширных скоплений (рис 3.2) [Ivanov and Head, 1996].

Рис. 3.1. Примеры хорошо развитой тессерной местности, поверхность которой характеризуется пересечениями широких валов (черные стрелки) и узких грабенов и трещин. В пределах такой тессерной местности проявления посттессерных вулканических равнин (белые треугольники) редки. Белыми стрелками показаны уплощенные тессерные блоки (домены). (1) Фрагмент фотокарны C1-MIDR.30n081, центр изображения - 35.9°с.ш., 81.2°в.д., (2) Фрагмент фотокарны C1-MIDR.00n077, центр изображения - 4.7°ю.ш., 83.0°в.д., (3) Фрагмент фотокарны C1-MIDR.00n129, центр изображения - 6.5°ю.ш., 130.6°в.д. Все изображения в синусоидальной проекции.

Рис. 3.2. Пространственное распределение тессерной местности на Венере. Тессерные регионы и массивы высвечены и показаны на фоне глобальной геологической карты Венеры, детали которой приглушены. Простая цилиндрическая проекция.

Сложность строения поверхности и редкость на ней не тектонизированных останцов исходного материала тессеры [Ivanov, 2001] крайне затрудняет понимание природы. Некоторые характеристики тессерной местности, например, его возвышение ее массивов над окружающей местностью [Ivanov and Head, 1996] и их малая кажущаяся глубина компенсации [Sjogren et al., 1980, 1983] свидетельсвуют, что крупные тессерные регионы представляют собой изостатически уравновешенные раздувы коры Венеры [Grimm, 1994]. Такому строению тессерных массивов не противоречит гипотеза о небазальтовом, гранитоподобном, составе их вещества [Nikolaeva et al., 1988, 1992; Nikolaeva, 1990]. Подтверждение или опровержение этой гипотезы прямыми замерами химического состава тессерного материала имело бы важнейшее значение для понимания геологической истории Венеры.

Другой важной особенностью тессерной местности является то, что этот тип местности представляет собой образование, древнейшее из различимых [Ivanov and Head, 1996], и начинает видимую геологическую летопись этой планеты [Basilevky and Head, 1998; Ivanov and Head, 2011]. Таким образом, тессера представляет собой "окно" в геологическое прошлое Венеры. Указанные особенности тессерной местности определяют ее высший научный приоритет, и тессера была выбрана в качестве основной цели экспедиции "Венера-Д" [см. отчеты по теме "Венера-Д" за 2009-2011 годы].

Изображения типичной тессерной поверхности (рис. 3.1) показывают, что эта местность образована наборами субпаралелльных широких (10-15 км) валов, пересеченных узкими (первые километры) грабенами, или удлиненными и уплощенными блоками (доменами) шириной десяки километров, разделенных узкими трогами. Во всех тессерных массивах присутствуют свидетельства постформационного вулканизма в виде гладких внутритессерных равнин (рис. 3.1а, в). Эти равнины, хотя и привлекательны с точки зрения безопасности посадки, но являются местностью, которую следует избегать при проведении экспериментов экспедиции "Венера-Д". Морфология постессерных

равнин свидетельствует, что они почти наверняка представлены полями базальтовых лав, опробование которых не предоставит существенной новой информации. Поэтому при выборе потенциальных мест посадки следует избегать тессерных массивов, в которых следы посттессерного вулканизма представлены обильно.

41

Предварительный выбор районов посадки для экспедиции "Венера-Д" со стремлением расположить их в тессерной местности был выполнен на предыдущих стадиях НИР. Особенность этого этапа - выбор мест посадки с учетом определяемых баллистическими ограничениями зон достижимости для конкретных дат запуска. Координаты дуг достижимости для 2018, 2020, 2021, 2023, 2024 и 2026 годов были предоставлены нам Институтом прикладной математики. Мы установили, какие тессерные массивы пересекаются дугами и проанализировали перспективность этих тессерных областей с точки зрения задач экспедиции "Венера-Д".

Ниже приведены тессерные массивы в зонах достижимости 2018-2026 гг.

3.1 Зона достижимости 2018 года

Здесь и далее в качестве зоны достижимости мы рассматриваем полосу шириной 300 км, центр которой представлен линией дуги достижимости. Зона, таким образом, полностью заключает в себе предполагаемый эллипс посадки. Зона достижимости 2018 года почти полностью расположена в северном полушарии между долготами примерно 135-270° в.д. (рис. 3.3). На всем своем протяжении зона пересекает два региона, где развита тессерная местность. Первый регион захватывает крупные изометричные тессерные области в восточной части Земли Афродиты, а второй - вытянутый тессерный массив в центральной части области Бета (рис. 3.3). Общий вид поверхности в регионе 1 показан на Рисунке 4. В пределах этого региона можно выбрать два потенциальных места посадки (Рисунок 4): первое расположено на самой восточной окраине тессеры Фетиды, а второе - на востоке крупного тессерного массива, примыкающего с севера к

тессере Фетиды. Предполагаемое место посадки в регионе 2 захватывает западную оконечность удлиненного тессерного массива на западном склоне области Бета (Рисунок 5).

Рис. 3.3. Положение дуги достижимости для 2018 года показано на фоне карты распространенности тессерной местности. Отмечены так же основные физиографические детали поверхности. Простая цилиндрическая проекция.

Рис. 3.4. Регион 1 в зоне достижимости для 2018 года. Зона пересекает тессерные регионы у восточной окраины Земли Афродиты (см. рис. 3.3). Зона достижимости ограничена тонкими желтыми линиями; центральная линия соответствует рассчитанной дуге достижимости. Красные круги показывают посадочные эллипсы. Их диаметр 300 км. Изображение в синусоидальной проекции.

Рис. 3.5. Регион 2 в зоне достижимости для 2018 года. Зона пересекает тессерный массив на западном склоне области Беты (см. рис. 3.3). Зона достижимости ограничена тонкими желтыми линиями; центральная линия соответствует рассчитанной дуге достижимости. Красные круги показывают посадочные эллипсы. Их диаметр во всех случаях равен 300 км. Изображение в синусоидальной проекции

<u>Место посадки 1 в регионе 1 (рис. 3.6)</u> представляет крупноблоковую тессерную местность, слабо выраженные валы, которой ориентированы в северном и северо-восточном направлении в пределах юго-западного сектора посадочного эллипса.

Рис. 3.6. Вид тессерной местности в первом посадочном эллипсе региона 1 для зоны достижимости 2018 г. Белыми линиями оконтурены внутритессерные равнины. Их площадь незначительна и составляет менее 5% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 6.1°ю.ш., 136.9°в.д.

Северо-западный сектор представлен хаотически построенной местностью, юговосточный сектор представляет собой обширное (100-200 км) плато, густо иссеченное параллельными уступами северо-западного простирания. Важной особенностью тессеры в данной области является то, что внутритессерные равнины занимают незначительную (<5%) долю эллипса посадки, что повышает вероятность определения состава материала тессеры, а не внутритессерной равнины (рис. 3.6). Место посадки 2 в регионе 1 (рис. 3.7) представляет тессеру практически лишенную валов, структурный рисунок которой определяется трогами, ориентированными либо в северо-северо-западном направлении (северные и западные части посадочного эллипса), либо хаотическими (южная часть эллипса). Троги рассекают поверхность на удлиненные и изометричные блоки; днище трогов в некоторых случаях перекрыты материалом внутритессерных равнин, количество которых невелико (5-10% от общей площади эллипса).

Рис. 3.7. Вид тессерной местности во втором посадочном эллипсе региона 1 для зоны достижимости 2018 г. Белыми линиями оконтурены внутритессерные равнины. Их площадь в данной области составляет примерно 5-7% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 2.7°ю.ш., 135.7°в.д.

<u>Место посадки 1 в регионе 2 (рис. 3.8)</u> охватывет западную оконечность удлиненного тессерного массива, вытяннутого в субширотном направлении. Тессера в этой области состоит из протяженных (сотни километров) широких (первые десятки километров) валов, разделенных сравнительно узкими трогами. Валы пересечены в поперечном направлении узкими (первые километры) трещинами и грабенами. Особенностью данного потенциального места посадки состоит в том, что значительная доля посадочного эллипса к северу и югу от тессерного массива (примерно 30% площади эллипса) занята равнинами, окружающими тессеру с внешней стороны.

Рис. 3.8. Вид тессерной местности в первом посадочном эллипсе региона 2 для зоны достижимости 2018 г. Белыми линиями оконтурены внутритессерные равнины и отдельно стоящие тессерные массивы. Площадь тессерной местности в данной области составляет примерно 40% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 33.4°с.ш., 270.2°в.д.

Внутритессерные равнины (расположенные целиком в пределах тессерного массива) так же составляют существенную долю, около 10% площади тессеры (рис. 3.8).

Таким образом, в данном месте посадки велика вероятность (ок. 40 %) попадания на нетессерную местность.

3.2 Зона достижимости 2020 года

Зона достижимости 2020 года лежит в основном в северном полушарии Венеры примерно между 150 и 300°в.д. и протягивается от восточной оконечности Земли Афродиты через равнину Ганики и область Бета в область Фебы (рис. 3.9).

На всем протяжении зона достижимости пересекает только один тессерный регион, расположенный в западной части области Бета (рис. 3.10), что определяет единственное место посадки, приемлемое для 2020 года (рис. 3.11). Главные структуры тессеры в этой области представлены слабо выраженными, вероятно - низкими, валами восток-северо-восточного простирания; их ширина составляет 15-20 км. Наиболее обильными и выразительными структурами данного тессерного массива выступают частые и узкие (первые километры и менее) гряды, уступы и борозды, ориентированные примерно ортогонально простиранию валов. Основная отрицательная особенность места посадки 2020 года - большое количество равнинной местности, которая окружает тессерный массив с севера и юга и проникает глубокими заливами внутрь тессеры. Равнины занимают около 60% площади посадочного эллипса (рис. 3.11). Рассчитанная дуга достижимости для 2020 года пересекает тессерный массив в самой узкой его части (рис. 3.10), но если сместить дугу к западу примерно на 1°, то доля тессеры в посадочном эллипсе существенно возрастет, до 50-60% площади эллипса.

Рис. 3.9. Положение дуги достижимости для 2020. Простая цилиндрическая проекция.

Рис. 3.10. Регион 1 в зоне достижимости для 2020 года. Зона пересекает тессерный массив на западной окраине области Беты. Зона достижимости ограничена тонкими желтыми линиями, красный круг показывает посадочный эллипс диаметром 300 км. Изображение в синусоидальной проекции.

3.3 Зоны достижимости 2021 и 2024 годов.

Зона достижимости 2021 не пересекает ни одного тессерного массива (рис. 3.12), а зона 2024 года плохо определена. В той части, где она определена уверенно, тессерные массивы отсутствуют (рис. 3.12).

3.4 Зона достижимости 2023 года

Зона достижимости 2023 года располагается преимущественно в северном полушарии Венеры примерно между 180 и 330° в.д. протягивается от равнины Русалки в сторону области Бета, огибая ее с севера (рис. 3.13).

Рис. 3.11. Вид тессерной местности в посадочном эллипсе для зоны достижимости 2020 г. Белыми линиями оконтурены внутритессерные равнины. Площадь тессерной местности в данной области составляет примерно 40% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 33.4°с.ш., 270.2°в.д.

Зона достижимости касается двух небольших тессерных блоков, расположенных в удаленных друг от друга регионах. В регионе 1 (рис. .3.14) в пределах зоны достижимости расположены два небольших тессерных массива поперечником примерно 100х50 км (рис. 3.15) и сильно подтопленных окружающими равнинами. Доля тессерной местности в данном посадочном эллипсе не превышает 15%, что делает эту область практически непригодной для целей экспедиции "Венера-Д".

Во втором регионе расположен крупный тессерный регион, но дуга достижимости только касается его северо-восточного края, так что в зону достижимости попадает только незначительный фрагмент тессеры (рис. 3.16). Смещение дуги примерно на 3° к западу существенно улучшило бы ситуацию.

Рис. 3.12. Положение дуг достижимости для 2021 и 2024 годов. Ни одна из них не пересекает тессерные массивы. Простая цилиндрическая проекция.

В потенциальном месте посадки во втором регионе (рис. 3.17) тессерная местность расположена только в западной половине посадочного эллипса, составляет примерно 25% его площади и образована множеством узких (первые километры) гряд и борозд преимущественно северного простирания. Эти структуры осложняют поверхность более широких (10-15 км) валов, ориентированных примерно в том же направлении. Частично, данный тессерный массив представляет собой местность переходного типа [Ivanov and Head, 2001], в которой нарастающее количество дислокаций превращает равнинную морфологию в тессероподобную [Basilevsky, 2008]. Это обстоятельство резко понижает приоритет данного тессерного массива как цели экспедиции "Венера-Д".

Рис. 3.13. Положение дуги достижимости для 2023. Дуга пересекает небольшой тессерный фрагмент вблизи своей северной точки и касается крупной тессеры на востоке области Беты. Простая цилиндрическая проекция.

Рис. 3.14. Регион 1 в зоне достижимости для 2023 года. Зона (ограничена тонкими желтыми линиями) пересекает скопление небольших тессерных массивов. Красный круг показывает посадочный эллипс диаметром 300 км. Изображение в синусоидальной проекции.

3.5 Зона достижимости 2026 года

Зона достижимости 2026 года располагается близко к зоне 2018 года, но восточнее последней (ср. рис. .3.3 и 3.18), и пересекает массивы тессерной местности в двух регионах (рис. 3.18). В первом регионе зона встречает небольшой фрагмент тессеры, который расположен к востоку от обширного тессерного региона Фетиды и, вероятно, представляет собой фрагмент этого региона, отшнурованный лавовыми равнинами (рис. 3.19). Данный фрагмент тессеры расположен примерно в 450 км к западу от ударного кратера Budevska, от которого распространяется радарно-темная парабола. Такие параболы у кратеров Венеры вызваны оседанием тонкодисперсного материала, выброшенного в атмосферу в результате ударного события [Campbell et al., 1992] и распространяются на сотни-тысячи километров к западу от родительского ударного кратера.

Рис. 3.15. Вид тессерной местности в первом регионе для зоны достижимости 2023 г. Белыми линиями оконтурены отдельные фрагменты тессеры. Их суммарная площадь не превышает примерно 10-12% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 45.4°с.ш., 249.6°в.д.

Таким образом, поверхность тессеры в первом регионе зоны достижимости 2026 года может быть загрязнена веществом, не имеющим отношения к тессере [Basilevky et al., 2004]. Фактически все тессерные массивы, попадающие в зоны достижимости, расположены в пределах предполагаемых темных парабол [Basilevky et al., 2007] и, потенциально, могут быть контаминированы нетессерным веществом.

Рис. 3.16. Регион 2 в зоне достижимости для 2023 года (ограничена тонкими желтыми линиями). Только юго-западная часть зон пересекает тессерный массивов. Красный круг показывает посадочный эллипс диаметром 300 км. Изображение в синусоидальной проекции.

Избежать влияния такой контаминации можно, если опробывать крупноглыбовый материал поверхности, который не может представлять собой слежавшийся, но слабопрочный, и, возможно, тонкослоистый материал парабол.

Посадочный эллипс в первом регионе перекрывает практически весь тессерный массив (рис. 3.19), который харатеризуется очень извилистыми границами и глубокими заливами равнин внутрь тессеры (рис. 3.20). Хотя суммарная площадь тессеры в пределах посадочного эллипса составляет примерно 50%, глубокие заливы равнинного материала расчленяют тессерный массив на более мелкие фрагменты (рис. 3.20). Второй регион в зоне достижимости 2026 года практически совпадает со вторым регионом в зоне 2018 года (ср. рис. 3.5 и рис.

3.21), а посадочный эллипс смещен примерно на 2.5° к востоку относительно эллипса 2018 года и перекрывает тот же самый тессерный массив (рис. 3.21).

Рис. 3.17. Вид тессерной местности во втором регионе для зоны достижимости 2023 г. Белыми линиями оконтурены отдельные фрагменты тессеры. Их суммарная площадь составляет примерно 25% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 34.5°с.ш., 302.0°в.д.

В эллипсе посадки 2026 года, однако, суммарная площадь тессерной местности выше и составляет примерно 75-80% площади эллипса.

Рис. 3.18. Положение дуги достижимости для 2026. Дуга пересекает тессерную местность в двух регионах, на востоке Земли Афродиты и на западном склоне области Беты. Простая цилиндрическая проекция.

Рис. 3.19. Регион 1 в зоне достижимости для 2026 года (ограничена тонкими желтыми линиями). Красный круг, который показывает посадочный эллипс диаметром 300 км, практически полностью перекрывает тессерных массив. Изображение в синусоидальной проекции.

Рис. 3.20. Вид тессерной местности в первом регионе для зоны достижимости 2026 г. Белыми линиями показаны контуры тессеры, которая составляет примерно 50% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 0.6°с.ш., 138.5°в.д.

Рис. 3.21. Регион 2 в зоне достижимости для 2026 года (ограничена тонкими желтыми линиями). Красный круг показывает посадочный эллипс диаметром 300 км. Изображение в синусоидальной проекции.

Рис. 3.22. Вид тессерной местности во втором регионе для зоны достижимости 2026 г. Белыми линиями показаны контуры тессеры, которая составляет примерно 75-80% площади эллипса. Изображение в синусоидальной проекции. Центр изображения - 33.1°с.ш., 271.7°в.д.

4. РАЗРАБОТКА ВАРИАНТОВ СХЕМ, ОБЕСПЕЧИВАЮЩИХ ДОСТАВКУ ПА В ЗАДАННУЮ ОБЛАСТЬ НАД ПОВЕРХНОСТЬЮ ВЕНЕРЫ

Проект «Венера-Д» предполагает доставку к Венере орбитального космического аппарата (КА), спускаемого аппарата (СА) и субспутника. Основная цель этой главы – расчёт окон стартов в период с 2018 г. по 2026 г. и разработка вариантов схем, обеспечивающих доставку спускаемого аппарата в заданную область над поверхностью Венеры. Прицельные параметры приведения КА к Венере должны обеспечить вход СА в атмосферу Венеры с заданным углом. Кроме этого должны быть обеспечены условия освещённости и условия радиовидимости с наземных станций слежения. Первая и вторая коррекции обеспечивают приведение СА к Венере с заданной точностью. Вторая коррекция проводится за четверо суток до подлёта КА к Венере. После этого СА отделяется от основного КА и совершает автономный полёт. Основной КА после проведения второй коррекции выполняет маневр увода, который должен обеспечить переход на пролётную гиперболу с заданным наклонением (90°) и заданной высотой перицентра (250 км). При этом КА должен достичь минимального расстояния до Венеры на четыре часа раньше, чем СА достигнет её атмосферы. В момент входа СА в атмосферу Венеры основной КА должен обеспечить связь с ним и ретранслировать на Землю поток телеметрической информации.

Раздел состоит из трех разделов. В первом разделе проведён расчёт окон стартов в период с 2018 г. по 2026 г. Определены энергетические характеристики перелётов, выбраны оптимальные окна. Определено, что наилучшим с энергетической точки зрения является окно 2024 г.

Во втором и третьем разделах проведён расчёт областей достижимости для спускаемого аппарата на поверхности Венеры. Прицельные параметры приведения КА к Венере должны обеспечить вход СА в атмосферу Венеры с заданным углом. Одновременно должны быть обеспечены условия освещённости и условия радиовидимости с наземных станций слежения. Для оптимальных условий старта вычислены области достижимости спускаемого аппарата на поверхности Венеры в зависимости от наклонения орбиты КА. Для точек области достижимости вычислены значения углов Земля – СА – Венера и Солнце – СА – Венера. Проведён анализ точности приведения КА к Венере.

4.1. Расчёт характеристик окон стартов для перелётов Земля – Венера до 2026 г.

4.1.1. Методика расчёта оптимальных окон старта

Расчёт окон старта для межпланетных перелётов хорошо описан в литературе (Соловьев Ц.В. и др., 1973, Тарасов Е.В., 1973, Сихарулидзе Ю.Г., 2011, Interplanetary mission design handbook, 1983). Так как перелёт к другим планетам требует больших энергетических затрат, то во главу угла при расчёте ставится минимизация характеристической скорости.

Для приближённой оценки оптимальных дат старта делаются следующие исходные предположения: орбиты планет предполагаются круговыми и компланарными, траектория перелёта имеет Гомановский тип.

Возможность перелёта к Венере с минимальной потребной энергетикой повторяется каждые восемь лет (период великих противостояний планеты). При некотором увеличении запаса характеристической скорости КА, по сравнению с минимально необходимым, появляется возможность полётов к Венере каждые 1.6 года.

Получив оптимальные даты старта в этих предположениях, нужно решать задачу в более реалистичной постановке, учитывая эксцентриситеты орбит планет и их некомпланарность. Для этого задаётся сетка значений дат отлёта и дат прилёта. Для этих дат решают задачу Ламберта (Соловьев Ц.В. и др., 1973, Тарасов Е.В., 1973, Сихарулидзе Ю.Г., 2011) и получают векторы скорости отлёта и скорости прилёта. Сумма модулей этих скоростей даёт характеристическую скорость, необходимую для перелёта. На основе расчёта строят изолинии характеристической скорости в плоскости параметров «дата старта – длительность перелёта».

4.1.2. Окно стартов 2020 г.

Таблица 4.1. Характеристические скорости для окна стартов 2020 г. (полужирным шрифтом выделена строка с минимальной суммарной скоростью).

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2019.09.17	2020.05.26	7.166	4.580	11.746

	Дата подлёта	Скорость	Скорость	Сумма
Дата старта		отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2019.09.21	2020.05.28	7.081	4.542	11.623
2019.09.25	2020.05.30	7.002	4.499	11.501
2019.09.29	2020.06.01	6.929	4.450	11.379
2019.10.03	2020.06.03	6.850	4.395	11.245
2019.10.07	2020.06.05	6.761	4.336	11.097
2019.10.11	2020.06.07	6.667	4.271	10.938
2019.10.15	2020.06.09	6.571	4.202	10.773
2019.10.19	2020.06.11	6.477	4.129	10.606
2019.10.23	2020.06.13	6.391	4.052	10.443
2019.10.27	2020.06.15	6.312	3.971	10.284
2019.10.31	2020.06.17	6.231	3.889	10.120
2019.11.04	2020.06.19	6.142	3.805	9.947
2019.11.08	2020.06.20	6.037	3.730	9.767
2019.11.12	2020.06.22	5.939	3.644	9.584
2019.11.16	2020.06.24	5.843	3.561	9.404
2019.11.20	2020.06.26	5.756	3.481	9.236
2019.11.24	2020.06.28	5.676	3.406	9.082
2019.11.28	2020.06.30	5.599	3.338	8.937
2019.12.02	2020.07.02	5.516	3.278	8.794
2019.12.06	2020.07.03	5.423	3.234	8.657
2019.12.10	2020.07.06	5.337	3.193	8.530
2019.12.14	2020.07.08	5.248	3.171	8.419
2019.12.18	2020.07.10	5.167	3.165	8.331
2019.12.22	2020.07.12	5.096	3.176	8.271
2019.12.26	2020.07.15	5.024	3.207	8.231
2019.12.30	2020.07.17	4.951	3.252	8.202
2020.01.03	2020.07.20	4.863	3.318	8.181
2020.01.07	2020.07.23	4.767	3.400	8.167
2020.01.11	2020.07.25	4.677	3.483	8.160
2020.01.15	2020.07.28	4.577	3.588	8.165
2020.01.19	2020.07.31	4.481	3.701	8.182
2020.01.23	2020.08.03	4.385	3.821	8.206
2020.01.27	2020.08.05	4.298	3.928	8.226
2020.01.31	2020.08.08	4.185	4.054	8.238
2020.02.04	2020.08.11	4.063	4.181	8.245
2020.02.08	2020.08.13	3.956	4.291	8.247
2020.02.12	2020.08.16	3.833	4.418	8.252
2020.02.16	2020.08.19	3.721	4.547	8.267
2020.02.20	2020.08.21	3.632	4.651	8.284
2020.02.24	2020.08.24	3.524	4.776	8.300
2020.02.28	2020.08.26	3.432	4.876	8.308
2020.03.03	2020.08.28	3.341	4.975	8.316
2020.03.07	2020.08.31	3.234	5.093	8.327
2020.03.11	2020.09.02	3.163	5.188	8.351
2020.03.15	2020.09.04	3.116	5.282	8.398
2020.03.19	2020.09.06	3.086	5.376	8.463

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2020.03.23	2020.09.08	3.070	5.470	8.540
2020.03.27	2020.09.11	3.041	5.587	8.628
2020.03.31	2020.09.13	3.048	5.682	8.729
2020.04.04	2020.09.15	3.074	5.779	8.853
2020.04.08	2020.09.17	3.133	5.880	9.014
2020.04.12	2020.09.19	3.228	5.987	9.214
2020.04.16	2020.09.21	3.348	6.099	9.447
2020.04.20	2020.09.23	3.485	6.218	9.703
2020.04.24	2020.09.25	3.636	6.346	9.982
2020.04.28	2020.09.28	3.770	6.515	10.285

Рисунок 4.1. Суммарные характеристические скорости (изолинии). Единица измерения по осям – сутки. По оси абсцисс даты старта (0 соответствует дате 2020.02.02), по оси ординат – продолжительность перелёта.

4.1.3. Окно стартов 2021 г.

Таблица 4.2. Характеристические скорости для окна стартов 2021 г. (полужирным шрифтом выделена строка с минимальной суммарной скоростью).

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2021.04.23	2021.12.31	6.550	4.289	10.839
2021.04.27	2022.01.02	6.473	4.214	10.687
2021.05.01	2022.01.04	6.401	4.138	10.538
2021.05.05	2022.01.05	6.330	4.071	10.401
2021.05.09	2022.01.07	6.276	3.993	10.269
2021.05.13	2022.01.09	6.224	3.918	10.142
2021.05.17	2022.01.11	6.170	3.846	10.016
2021.05.21	2022.01.12	6.103	3.786	9.888
2021.05.25	2022.01.14	6.037	3.720	9.758
2021.05.29	2022.01.16	5.973	3.662	9.635
2021.06.02	2022.01.18	5.918	3.612	9.530
2021.06.06	2022.01.20	5.870	3.571	9.442
2021.06.10	2022.01.22	5.825	3.541	9.365
2021.06.14	2022.01.24	5.778	3.520	9.298
2021.06.18	2022.01.26	5.724	3.511	9.235
2021.06.22	2022.01.28	5.662	3.514	9.175
2021.06.26	2022.01.30	5.596	3.528	9.124
2021.06.30	2022.02.01	5.536	3.553	9.089
2021.07.04	2022.02.04	5.477	3.594	9.071
2021 07 08	2022 02 06	5 422	3 638	9 060
2021 07 12	2022 02 08	5 365	3 690	9 054
2021 07 16	2022.02.11	5 291	3 756	9 046
2021.07.20	2022.02.13	5 212	3 818	9 030
2021 07 24	2022 02 15	5 126	3 885	9 011
2021 07 28	2022.02.18	5 031	3 962	8 992
2021.08.01	2022.02.20	4.949	4.031	8.979
2021 08 05	2022 02 23	4 857	4 1 1 0	8 967
2021 08 09	2022 02 25	4 772	4 177	8 948
2021.08.13	2022.02.27	4 678	4 242	8 920
2021 08 17	2022 03 02	4 561	4 314	8 875
2021.08.21	2022.03.02	4 445	4 373	8 818
2021.08.25	2022.03.06	4 330	4 428	8 758
2021.08.29	2022.03.08	4 220	4 480	8 699
2021 09 02	2022.03.11	4 104	4 535	8 639
2021.09.06	2022.03.13	3 996	4 576	8 572
2021.09.10	2022.03.15	3 883	4 612	8 495
2021.09.10	2022.03.13	3 758	4 644	8 403
2021.09.18	2022.03.19	3 629	4 671	8 300
2021.09.10	2022.03.21	3 503	4 694	8 197
2021.09.26	2022 03 23	3 388	4 713	8 101
2021.09.20	2022.03.25	3 284	4 728	8 012
2021.09.00	2022.03.23	3 189	4 739	7 928
202110.04	2022.03.27	3 096	4 745	7 841
2021.10.00	2022.03.20	3,000	4 749	7 750
2021.10.12	2022.03.50	2 913	4 753	7 665
2021.10.20	2022.04.02	2.846	4.754	7.601

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2021.10.24	2022.04.04	2.807	4.756	7.563
2021.10.28	2022.04.06	2.800	4.760	7.560
2021.11.01	2022.04.07	2.821	4.763	7.584
2021.11.05	2022.04.08	2.866	4.770	7.636
2021.11.09	2022.04.10	2.929	4.782	7.711
2021.11.13	2022.04.12	3.025	4.806	7.832
2021.11.17	2022.04.16	3.167	4.904	8.071
2021.11.21	2022.04.20	3.345	5.063	8.408
2021.11.25	2022.04.24	3.539	5.265	8.804
2021.11.29	2022.04.28	3.735	5.496	9.231
2021.12.03	2022.05.02	3.920	5.747	9.667
2021.12.07	2022.05.06	4.086	6.011	10.097
2021.12.11	2022.05.10	4.239	6.283	10.522
2021.12.15	2022.05.14	4.385	6.561	10.946

4.1.4. Окно стартов 2023 г.

Таблица 4.3. Характеристические скорости для окна стартов 2023 г. (полужирным шрифтом выделена строка с минимальной суммарной скоростью).

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2022.11.28	2023.08.07	7.249	3.932	11.181
2022.12.02	2023.08.09	7.166	3.885	11.051
2022.12.06	2023.08.11	7.076	3.844	10.920
2022.12.10	2023.08.14	6.986	3.806	10.793
2022.12.14	2023.08.16	6.895	3.780	10.676
2022.12.18	2023.08.18	6.809	3.762	10.571
2022.12.22	2023.08.20	6.727	3.753	10.480
2022.12.26	2023.08.23	6.643	3.751	10.394
2022.12.30	2023.08.25	6.547	3.756	10.304
2023.01.03	2023.08.27	6.442	3.770	10.212
2023.01.07	2023.08.30	6.329	3.793	10.122
2023.01.11	2023.09.01	6.218	3.819	10.036
2023.01.15	2023.09.03	6.110	3.850	9.960
2023.01.19	2023.09.06	6.002	3.890	9.893
2023.01.23	2023.09.08	5.898	3.928	9.826
2023.01.27	2023.09.10	5.784	3.969	9.753
2023.01.31	2023.09.13	5.653	4.017	9.670
2023.02.04	2023.09.15	5.521	4.057	9.579
2023.02.08	2023.09.17	5.388	4.098	9.486
2023.02.12	2023.09.19	5.257	4.138	9.395
2023.02.16	2023.09.21	5.132	4.175	9.307
2023.02.20	2023.09.24	5.004	4.214	9.218
2023.02.24	2023.09.26	4.875	4.244	9.118

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2023.02.28	2023.09.28	4.734	4.269	9.003
2023.03.04	2023.09.30	4.588	4.290	8.878
2023.03.08	2023.10.02	4.441	4.306	8.747
2023.03.12	2023.10.04	4.297	4.317	8.615
2023.03.16	2023.10.06	4.163	4.324	8.486
2023.03.20	2023.10.07	4.033	4.323	8.356
2023.03.24	2023.10.09	3.900	4.318	8.218
2023.03.28	2023.10.11	3.760	4.307	8.067
2023.04.01	2023.10.12	3.613	4.294	7.906
2023.04.05	2023.10.14	3.468	4.271	7.739
2023.04.09	2023.10.16	3.334	4.244	7.578
2023.04.13	2023.10.17	3.205	4.216	7.422
2023.04.17	2023.10.18	3.089	4.187	7.276
2023.04.21	2023.10.20	2.982	4.144	7.127
2023.04.25	2023.10.21	2.866	4.106	6.972
2023.04.29	2023.10.22	2.753	4.064	6.817
2023.05.03	2023.10.23	2.651	4.019	6.670
2023.05.07	2023.10.24	2.571	3.971	6.542
2023.05.11	2023.10.25	2.523	3.919	6.442
2023.05.15	2023.10.26	2.505	3.863	6.369
2023.05.19	2023.10.27	2.513	3.803	6.316
2023.05.23	2023.10.27	2.525	3.751	6.277
2023.05.27	2023.10.27	2.573	3.695	6.268
2023.05.31	2023.10.28	2.704	3.592	6.296
2023.06.04	2023.11.01	3.004	3.634	6.638
2023.06.08	2023.11.05	3.304	3.877	7.180
2023.06.12	2023.11.09	3.565	4.198	7.762
2023.06.16	2023.11.13	3.780	4.546	8.326
2023.06.20	2023.11.17	3.955	4.900	8.854
2023.06.24	2023.11.22	4.047	5.299	9.346
2023.06.28	2023.11.27	4.111	5.690	9.801
2023.07.02	2023.12.02	4.158	6.071	10.229
2023.07.06	2023.12.07	4.196	6.444	10.640
2023.07.10	2023.12.11	4.272	6.760	11.032
2023.07.14	2023.12.16	4.285	7.115	11.400
2023.07.18	2023.12.20	4.331	7.414	11.746
2023.07.22	2023.12.25	4.319	7.753	12.072

4.1.5. Окно стартов 2024 г.

Таблица 4.4. Характеристические скорости для окна стартов 2024 г. (полужирным шрифтом выделена строка с минимальной суммарной скоростью).

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
_		км/с	км/с	км/с
2024.07.04	2025.03.11	7.051	4.070	11.122
2024.07.08	2025.03.14	7.000	4.085	11.085
2024.07.12	2025.03.16	6.942	4.101	11.043
2024.07.16	2025.03.18	6.875	4.121	10.996
2024.07.20	2025.03.20	6.800	4.144	10.943
2024.07.24	2025.03.22	6.721	4.168	10.890
2024.07.28	2025.03.25	6.644	4.196	10.840
2024.08.01	2025.03.27	6.574	4.221	10.795
2024.08.05	2025.03.29	6.504	4.245	10.749
2024.08.09	2025.03.31	6.426	4.268	10.694
2024.08.13	2025.04.03	6.337	4.291	10.628
2024.08.17	2025.04.05	6.240	4.307	10.547
2024.08.21	2025.04.07	6.137	4.320	10.458
2024.08.25	2025.04.09	6.038	4.329	10.368
2024.08.29	2025.04.11	5.945	4.334	10.279
2024.09.02	2025.04.13	5.853	4.334	10.187
2024.09.06	2025.04.15	5.756	4.328	10.084
2024.09.10	2025.04.17	5.651	4.316	9.966
2024.09.14	2025.04.19	5.536	4.297	9.833
2024.09.18	2025.04.21	5.414	4.272	9.686
2024.09.22	2025.04.23	5.294	4.241	9.535
2024.09.26	2025.04.25	5.183	4.203	9.386
2024.09.30	2025.04.27	5.075	4.158	9.233
2024.10.04	2025.04.29	4.965	4.107	9.072
2024.10.08	2025.04.30	4.840	4.057	8.898
2024.10.12	2025.05.02	4.715	3.991	8.706
2024.10.16	2025.05.04	4.584	3.919	8.502
2024.10.20	2025.05.05	4.443	3.852	8.295
2024.10.24	2025.05.07	4.323	3.766	8.090
2024.10.28	2025.05.08	4.197	3.689	7.886
2024.11.01	2025.05.10	4.088	3.591	7.679
2024.11.05	2025.05.11	3.961	3.500	7.461
2024.11.09	2025.05.12	3.829	3.405	7.234
2024.11.13	2025.05.13	3.694	3.305	6.999
2024.11.17	2025.05.14	3.568	3.199	6.766
2024.11.21	2025.05.14	3.441	3.108	6.549
2024.11.25	2025.05.15	3.358	2.989	6.347
2024.11.29	2025.05.15	3.280	2.885	6.165
2024.12.03	2025.05.15	3.242	2.778	6.020
2024.12.07	2025.05.15	3.295	2.686	5.981
2024.12.11	2025.05.21	3.446	2.705	6.151
2024.12.15	2025.05.26	3.543	2.867	6.411
2024.12.19	2025.05.30	3.641	3.071	6.712
4.1.6. Окно стартов 2026 г.

Таблица 4.5. Характеристические скорости для окна стартов 2026 г. (полужирным шрифтом выделена строка с минимальной суммарной скоростью).

		Скорость	Скорость	Сумма
Дата старта	Дата подлёта	отлёта,	подлёта,	скоростей,
		км/с	км/с	км/с
2026.02.08	2026.10.21	6.830	4.457	11.287
2026.02.12	2026.10.23	6.723	4.471	11.193
2026.02.16	2026.10.25	6.619	4.481	11.100
2026.02.20	2026.10.28	6.514	4.488	11.002
2026.02.24	2026.10.30	6.402	4.489	10.891
2026.02.28	2026.11.01	6.282	4.486	10.768
2026.03.04	2026.11.03	6.158	4.478	10.636
2026.03.08	2026.11.05	6.040	4.464	10.504
2026.03.12	2026.11.07	5.928	4.445	10.373
2026.03.16	2026.11.09	5.823	4.420	10.243
2026.03.20	2026.11.10	5.716	4.393	10.109
2026.03.24	2026.11.12	5.609	4.355	9.964
2026.03.28	2026.11.14	5.493	4.311	9.804
2026.04.01	2026.11.16	5.375	4.261	9.635
2026.04.05	2026.11.17	5.252	4.213	9.465
2026.04.09	2026.11.19	5.144	4.150	9.294
2026.04.13	2026.11.21	5.045	4.082	9.127
2026.04.17	2026.11.22	4.942	4.018	8.960
2026.04.21	2026.11.24	4.847	3.939	8.786
2026.04.25	2026.11.25	4.733	3.865	8.598
2026.04.29	2026.11.27	4.628	3.776	8.404
2026.05.03	2026.11.28	4.512	3.695	8.207
2026.05.07	2026.11.29	4.404	3.611	8.015
2026.05.11	2026.11.30	4.307	3.525	7.832
2026.05.15	2026.12.01	4.221	3.437	7.658
2026.05.19	2026.12.02	4.138	3.348	7.486
2026.05.23	2026.12.03	4.053	3.259	7.313
2026.05.27	2026.12.04	3.972	3.174	7.146
2026.05.31	2026.12.05	3.905	3.096	7.002
2026.06.04	2026.12.07	3.871	3.025	6.896
2026.06.08	2026.12.08	3.857	2.989	6.846
2026.06.12	2026.12.11	3.873	2.988	6.861
2026.06.16	2026.12.14	3.893	3.037	6.930
2026.06.20	2026.12.17	3.905	3.128	7.032
2026.06.24	2026.12.20	3.908	3.251	7.159
2026.06.28	2026.12.23	3.907	3.400	7.306
2026.07.02	2026.12.27	3.880	3.587	7.467
2026.07.06	2026.12.30	3.875	3.765	7.641
2026.07.10	2027.01.02	3.871	3.952	7.823
2026.07.14	2027.01.05	3.861	4.143	8.003
2026.07.18	2027.01.08	3.837	4.335	8.172

4.1.7. Оптимальные даты старта к Венере

На основе анализа вышеприведённых таблиц построим сводную таблицу дат старта, наилучших с точки зрения затрат характеристической скорости. В эту таблицу дополнительно включён столбец, содержащий продолжительность перелёта. Из таблицы видно, что наилучшие возможности для перелёта приходятся на май 2023 года и на декабрь 2024 г.

Дата старта	Дата подлёта	Продолжительность перелёта, сутки	Скорость отлёта, км/с	Скорость подлёта, км/с	Сумма скоростей, км/с
2020.01.11	2020.07.25	196	4.677	3.483	8.160
2021.10.28	2022.04.06	160	2.800	4.760	7.560
2023.05.27	2023.10.27	153	2.573	3.695	6.268
2024.12.07	2025.05.15	159	3.295	2.686	5.981
2026.06.08	2026.12.08	183	3.857	2.989	6.846

Таблица 4.6. Оптимальные даты старта к Венере.

4.2. Разработка вариантов схем, обеспечивающих доставку спускаемого аппарата в заданную область над поверхностью Венеры

4.2.1. Условия входа спускаемого аппарата в атмосферу Венеры

Для выполнения расчётов по входу спускаемого аппарата в атмосферу Венеры использовалась так называемая картинная плоскость (ξ, η) . Она ортогональна вектору подлётной гиперболической скорости v_{∞} .

Орты осей $\left(\vec{e}_{\xi}, \vec{e}_{\eta} \right)$ в картинной плоскости определяются соотношениями:

$$\overline{e}_{\eta} = \frac{\overline{e}_n \times \overline{v}_{\infty}}{\left|\overline{e}_n \times \overline{v}_{\infty}\right|}, \quad \overline{e}_{\xi} = \overline{e}_{\eta} \times \frac{\overline{v}_{\infty}}{\left|\overline{v}_{\infty}\right|}$$

При выполнении расчётов (их результаты приведены в следующем разделе) номинальное значение угла входа было положено равным -20° . Можно выбрать такие значения координат (ξ , η), которые обеспечивают указанный угол входа на высоте атмосферы Венеры. В картинной плоскости была выбрана сетка координат; для каждого узла сетки решалась краевая задача в точной модели движения. Для вычисленной траектории, реализующей краевую задачу, определялось наклонение пролётной гиперболы, координаты в картинной плоскости ξ и η , широта и долгота точки входа в атмосферу, угол Земля–СА–Венера и угол Солнце–СА–Венера. Эти углы должны отвечать условиям радиовидимости и освещённости. К сожалению, эти требования нередко противоречат друг другу, что видно из таблиц и рисунков, приведённых в следующем разделе.

4.2.2. Анализ точности приведения КА к Венере

Результаты расчёта предельных ошибок приведения КА и СА к Венере приведены в таблицах 4.7. и 4.8. Расчёты выполнены в предположении, что при движении КА на промежуточной орбите искусственного спутника Земли выполняются траекторные измерения. По полученным измерениям уточняются параметры движения КА. Уточненные параметры движения КА используются при расчёте импульса перехода на траекторию перелёта Земля-Венера. Таким образом, ошибки выведения и ошибки исполнения импульса перехода на промежуточную орбиту компенсируются.

Первая коррекция выполняется на седьмые сутки полёта.

При проведении расчётов предполагалась следующая программа траекторных измерений. При подготовке коррекций траекторные измерения наклонной дальности и радиальной скорости выполняются ежедневно с трёх измерительных пунктов: Уссурийска, Медвежьих Озер и Евпатории. Подготовка к проведению первой коррекции начинается после выхода КА на траекторию перелёта. Подготовка ко второй коррекции начинается за две недели до её проведения. На участке перелёта выполнения первой коррекции и до начала подготовки ко второй коррекции траекторные измерения выполняются один раз в четыре дня.

На рисунках 4.2 – 4.3 показаны области ошибок приведения КА к Венере в её картинной плоскости после перехода на траекторию перелёта и после первой коррекции.

		Ошибка приведения после коррекции			Оши моме	бка прогно нт выполи коррекции	оза на нения 1
Номер коррекции	Затраты характеристической скорости, м/с	ξ, κΜ	η, км	т, сек	ξ, КМ	η, км	τ, сек
1	36.83	1560.9	7387.3	9501.7	10.0	79.0	39.0

Таблица 4.7. Точность приведения основного КА к Венере.

Рисунок 4.2. Ошибки приведения КА к Венере в её картинной плоскости после перехода на траекторию перелёта. По оси абсцисс ξ в тыс. км, по оси ординат η в тыс. км.

Рисунок 4.3. Ошибки приведения КА к Венере в её картинной плоскости после проведения первой коррекции. По оси абсцисс ξ в тыс. км, по оси ординат η в тыс.

КМ.

Вторая коррекция выполняется за четыре дня до подлёта к Венере. После выполнения коррекции выполняется маневр увода КА. В строке таблицы 4.2.1, соответствующей второй коррекции, приведены суммарные затраты характеристической скорости на собственно коррекцию и маневр увода. Ошибки приведения в картинной плоскости также соответствуют суммарному импульсу. Строка В таблице 4.2.2, соответствующая второй коррекции, содержит составляющую импульса до отделения СА от основного КА и маневра увода основного КА.

Третья коррекции движения основного КА проводится за одни сутки до подлёта. Её проведение обусловлено тем, что необходимо исправить ошибку по высоте перицентра пролётной гиперболы. Без проведения третьей коррекции

ошибка по высоте перицентра составляет величину около 500 км, что превосходит высоту перицентра номинальной траектории.

Точность приведения КА к Венере определяется ошибкой исполнения импульса коррекции по его направлению, которая составляет величину 0.7 градуса. Если конструкция аппарата, его двигательной установки и системы управления обеспечит более точное исполнение импульса, то проведение третьей коррекции может не потребоваться.

На рисунках 4.4. и 4.5. показаны области ошибок приведения КА к Венере в ее картинной плоскости после второй коррекции и импульса увода, а также после третьей коррекции. Значения предельных ошибок приведены в таблицах 4.8 и 4.9.

Из таблицы 4.9 видно, что самая плохая точность определения параметров движения КА имеет место на участке между второй и третьей коррекциями. Точность определения можно повысить, если обеспечить передачу на Землю показаний бортовых акселерометров при исполнении коррекции.

		Ошибка приведения после коррекции			Ошибка прогноза на момент выполнения коррекции		
Номер коррекции	Затраты характеристической скорости, м/с	ξ, км	η, км	τ, сек	ξ, КМ	η, км	τ, c
2	223.82	1084.2	1068.5	204.5	2.0	1.0	0.0
3	18.17	116.6	126.5	55.5	94.0	106.0	53.0

Таблица 4.8 – Точность приведения основного КА к Венере.

Предельная ошибка приведения основного КА по высоте перицентра65 км;Предельная ошибка приведения основного КА по наклонению0.3 град.

Таблица 4.9. То	очность приведения	спускаемого	аппарата к Венере.
-----------------	--------------------	-------------	--------------------

		Ошибка	приведен	ия после	Ошибка прогноза на		
			коррекции	[момент выполнения		
					коррекции		
Номер	Затраты	ξ, км	η, км	τ, сек	ξ, км	η, км	τ, сек
коррекции	характеристической						
	скорости, м/с						
2	100.66	486.9	511.0	139.3	2.0	1.0	0.0

Предельная ошибка приведения СА по углу входа

Рисунок 4.4. Ошибки приведения основного КА к Венере в её картинной плоскости после проведения второй коррекции и маневра увода. По оси абсцисс ξ в тыс. км, по оси ординат η в тыс. км

Рис. 4.5. Ошибки приведения основного КА к Венере в её картинной плоскости после проведения третьей коррекции. По оси абсцисс ξ в тыс. км, по оси ординат η в тыс. км.

4.3. Расчёт районов баллистической достижимости СА на поверхности Венеры

4.3.1. Методика расчёта районов баллистической достижимости спускаемого аппарата.

В первом разделе была изложена методика расчёта окон старта на основе решения задачи Ламберта. Были найдены оптимальные даты стартов. В этом разделе решается задача отыскания областей достижимости на поверхности Венеры для спускаемого аппарата.

Угол входа СА в атмосферу составляет –20°±1°. Меньшее значение может привести к «отскакиванию» СА от атмосферы, большее значение может привести к сгоранию аппарата в атмосфере Венеры. За счёт выбора наклонения орбиты КА могут быть достигнуты различные точки на поверхности Венеры.

Для проведения расчётов используется картинная плоскость (ξ, η), которая была определена в предыдущем разделе.

Исходными данными для программы расчёта точек на поверхности Венеры являются дата и время старта, стартовая скорость V_{∞} , наклонение орбиты перелёта, расстояние перицентра для прилётной гиперболы. Решается краевая задача. В результате расчёта уточняются дата и время старта, а также V_{∞} . Вычисляются координаты (ξ , η) на картинной плоскости. Определяется точка на поверхности Венеры (широта и долгота). Дополнительно определяются углы Земля – СА – Венера и Солнце – СА – Венера.

Результаты расчётов сведены в таблицы. Первый столбец содержит наклонение орбиты, второй и третий – координаты точки пересечения траектории и картинной плоскости, четвёртый и пятый – широту и долготу точки посадки. Наконец последние два столбца содержат значения углов Земля – СА – Венера и Солнце – СА – Венера.

Каждая из таблиц сопровождается тремя рисунками. На первом рисунке изображено геометрическое место точек посадки на плоскости «широта – долгота». На втором рисунке та же кривая представлена на сфере, изображающей поверхность Венеры. На третьем рисунке представлены значения углов Земля – СА – Венера и Солнце – СА – Венера в зависимости от долготы точки посадки.

82

На некоторых рисунках кривые имеют «изломы». Это связано с тем, что точки, представляющие район посадки, распределены на поверхности неравномерно. Сглаживания кривой не проводилось.

4.3.2. Окно стартов 2020 г.

					1	
Наклонение, град	ξ, ТЫС.КМ	η, тыс.км	широта, град	долгота, град	Угол Земля – – СА – – Венера, грал	Угол Солнце – – СА – – Венера, град
12.274	-0.035	17.987	3.230	149.286	147.137	76.361
12.276	-0.070	17.987	3.318	149.344	147.074	76.303
12.278	-0.105	17.986	3.406	149.403	147.010	76.246
12.282	-0.140	17.986	3.494	149.461	146.946	76.188
12.286	-0.175	17.986	3.582	149.520	146.881	76.130
12.291	-0.211	17.985	3.672	149.577	146.818	76.073
12.298	-0.246	17.985	3.761	149.636	146.752	76.015
12.306	-0.282	17.984	3.850	149.695	146.686	75.956
12.314	-0.318	17.984	3.939	149.755	146.620	75.897
12.324	-0.354	17.983	4.029	149.815	146.552	75.838
12.335	-0.390	17.982	4.121	149.875	146.486	75.780
12.347	-0.426	17.982	4.212	149.936	146.417	75.720
12.360	-0.463	17.981	4.304	149.997	146.348	75.659
12.374	-0.500	17.980	4.396	150.060	146.278	75.598
12.390	-0.537	17.979	4.489	150.122	146.207	75.537
12.407	-0.575	17.977	4.584	150.184	146.136	75.476
12.425	-0.613	17.976	4.679	150.249	146.063	75.413
12.444	-0.651	17.975	4.775	150.314	145.989	75.350
12.465	-0.690	17.973	4.872	150.379	145.914	75.285
12.487	-0.729	17.972	4.970	150.446	145.838	75.220
12.511	-0.769	17.970	5.070	150.512	145.762	75.156
12.536	-0.809	17.968	5.170	150.581	145.683	75.089
12.563	-0.850	17.967	5.272	150.650	145.603	75.021

Таблица 4.10. Район баллистической достижимости для окна стартов 2020 г.

Наклонение, град	ξ, ТЫС.КМ	η, тыс.км	широта, град	долгота, град	Угол Земля – – СА – – Венера, грал	Угол Солнце – – СА – – Венера, грал
12.592	-0.892	17.965	5.375	150.721	145.521	74.952
12.623	-0.934	17.962	5.481	150.792	145.439	74.884
12.655	-0.977	17.960	5.587	150.865	145.355	74.813
12.689	-1.020	17.958	5.695	150.940	145.268	74.741
12.725	-1.064	17.955	5.805	151.016	145.179	74.667
12.764	-1.110	17.952	5.917	151.093	145.089	74.592
12.805	-1.156	17.949	6.032	151.171	144.998	74.517
12.848	-1.202	17.946	6.148	151.252	144.903	74.439
12.893	-1.250	17.943	6.267	151.334	144.806	74.359
12.941	-1.299	17.940	6.388	151.419	144.706	74.278
12.992	-1.349	17.936	6.512	151.504	144.605	74.196
13.047	-1.400	17.932	6.639	151.593	144.500	74.111
13.104	-1.452	17.928	6.768	151.685	144.392	74.023
13.164	-1.506	17.923	6.901	151.777	144.282	73.935
13.228	-1.561	17.919	7.037	151.873	144.167	73.843
13.296	-1.617	17.914	7.177	151.972	144.049	73.749
13.368	-1.676	17.908	7.320	152.075	143.927	73.651
13.444	-1.735	17.903	7.468	152.178	143.802	73.553
13.525	-1.797	17.897	7.620	152.287	143.671	73.449
13.611	-1.860	17.890	7.776	152.400	143.536	73.343
13.702	-1.926	17.883	7.938	152.515	143.397	73.234
13.799	-1.993	17.876	8.104	152.635	143.251	73.121
13.902	-2.063	17.868	8.276	152.760	143.100	73.003
14.012	-2.135	17.859	8.454	152.889	142.944	72.883
14.129	-2.210	17.850	8.638	153.024	142.780	72.756
14.253	-2.288	17.840	8.829	153.164	142.608	72.624
14.386	-2.369	17.830	9.028	153.310	142.431	72.489
14.528	-2.453	17.819	9.235	153.463	142.243	72.347
14.680	-2.541	17.806	9.450	153.622	142.048	72.199
14.842	-2.633	17.793	9.674	153.790	141.842	72.044

Наклонение, град	ξ, ТЫС.КМ	η, тыс.км	широта, град	долгота, град	Угол Земля – – СА – – Венера, грал	Угол Солнце – – СА – – Венера, грал
15.016	-2.728	17.778	9.907	153.966	141.625	71.881
15.203	-2.829	17.763	10.153	154.150	141.398	71.712
15.404	-2.934	17.746	10.409	154.346	141.158	71.534
15.620	-3.044	17.727	10.678	154.551	140.904	71.347
15.852	-3.160	17.707	10.960	154.769	140.634	71.149
16.104	-3.282	17.685	11.258	154.999	140.349	70.941
16.375	-3.411	17.660	11.572	155.243	140.046	70.722
16.669	-3.547	17.633	11.902	155.505	139.721	70.487
16.988	-3.692	17.604	12.253	155.783	139.375	70.240
17.335	-3.845	17.571	12.625	156.082	139.003	69.974
17.713	-4.009	17.534	13.021	156.402	138.605	69.693
18.125	-4.183	17.493	13.443	156.747	138.176	69.392
18.577	-4.370	17.448	13.892	157.121	137.711	69.067
19.072	-4.570	17.396	14.375	157.525	137.208	68.719
19.616	-4.785	17.338	14.893	157.966	136.661	68.343
20.217	-5.017	17.273	15.451	158.448	136.064	67.936
20.882	-5.268	17.198	16.053	158.978	135.410	67.494
21.619	-5.541	17.112	16.706	159.562	134.690	67.011
22.441	-5.838	17.013	17.415	160.212	133.894	66.483
23.359	-6.163	16.898	18.189	160.936	133.011	65.903
24.390	-6.519	16.764	19.035	161.750	132.026	65.262
25.552	-6.910	16.606	19.963	162.671	130.921	64.551
26.868	-7.343	16.420	20.985	163.720	129.676	63.759
28.364	-7.822	16.197	22.115	164.927	128.263	62.873
30.076	-8.355	15.928	23.365	166.326	126.652	61.876
32.043	-8.950	15.602	24.753	167.965	124.802	60.750
34.317	-9.613	15.202	26.293	169.906	122.664	59.474
36.959	-10.354	14.708	27.998	172.234	120.178	58.020
40.044	-11.179	14.091	29.878	175.054	117.271	56.365
43.660	-12.092	13.316	31.921	178.518	113.854	54.480

Наклонение, град	ξ, ТЫС.КМ	η, тыс.км	широта, град	долгота, град	Угол Земля – – СА – – Венера, грал	Угол Солнце – – СА – – Венера, грал
47.909	-13.088	12.337	34.093	182.814	109.827	52.351
52.896	-14.151	11.103	36.305	188.174	105.082	49.981
58.720	-15.238	9.556	38.382	194.849	99.521	47.420
65.436	-16.278	7.651	40.034	203.020	93.084	44.792
73.017	-17.165	5.376	40.863	212.634	85.792	42.330
81.306	-17.770	2.782	40.470	223.211	77.798	40.376
90.000	-17.987	0.000	38.637	233.863	69.399	39.279
98.694	-17.770	-2.782	35.502	243.648	60.995	39.246
106.984	-17.165	-5.376	31.485	251.982	52.991	40.200
114.566	-16.278	-7.651	27.092	258.747	45.692	41.858
121.283	-15.238	-9.556	22.728	264.111	39.262	43.877
127.107	-14.151	-11.103	18.642	268.345	33.738	45.989
132.096	-13.088	-12.337	14.944	271.701	29.072	48.025
136.346	-12.092	-13.316	11.663	274.394	25.178	49.908
139.964	-11.179	-14.091	8.777	276.582	21.961	51.607
143.050	-10.354	-14.708	6.248	278.386	19.329	53.123
145.693	-9.613	-15.202	4.029	279.891	17.203	54.467
147.968	-8.950	-15.602	2.078	281.162	15.513	55.658
149.937	-8.355	-15.928	0.355	282.250	14.200	56.715
151.649	-7.822	-16.197	-1.173	283.189	13.211	57.657
153.147	-7.343	-16.420	-2.535	284.008	12.496	58.499
154.463	-6.910	-16.606	-3.755	284.727	12.011	59.253
155.626	-6.519	-16.764	-4.853	285.365	11.712	59.934
156.658	-6.163	-16.898	-5.845	285.934	11.564	60.549
157.577	-5.838	-17.013	-6.747	286.443	11.531	61.108
158.400	-5.541	-17.112	-7.569	286.903	11.587	61.617
159.138	-5.268	-17.198	-8.322	287.322	11.706	62.084
159.804	-5.017	-17.273	-9.014	287.703	11.872	62.513
160.405	-4.785	-17.338	-9.652	288.052	12.071	62.908
160.951	-4.570	-17.396	-10.241	288.374	12.291	63.275

Наклонение, град	ξ, тыс.км	η, тыс.км	широта, град	долгота, град	Угол Земля – – СА – – Венера,	Угол Солнце – – СА – – Венера,
161 446	_4 370	_17 448	_10 790	288 669	град 12 527	град 63.613
161 800	4.570	17.440	11 200	288.005	12.527	62 020
1(2,212	-4.103	-17.494	-11.300	200.743	12.709	(4.222
162.312	-4.009	-1/.534	-11.///	289.199	13.017	64.223
162.690	-3.845	-17.571	-12.222	289.437	13.264	64.499
163.037	-3.692	-17.604	-12.641	289.660	13.510	64.758
163.357	-3.547	-17.633	-13.034	289.869	13.752	65.002
163.652	-3.411	-17.660	-13.406	290.065	13.991	65.231
163.924	-3.282	-17.685	-13.756	290.250	14.224	65.447
164.175	-3.160	-17.707	-14.089	290.425	14.451	65.652
164.409	-3.044	-17.727	-14.404	290.589	14.673	65.846
164.625	-2.934	-17.746	-14.703	290.746	14.889	66.030
164.826	-2.829	-17.763	-14.988	290.896	15.097	66.206
165.013	-2.728	-17.779	-15.260	291.037	15.301	66.373
165.188	-2.633	-17.793	-15.520	291.172	15.499	66.533
165.351	-2.541	-17.806	-15.768	291.302	15.690	66.686
165.503	-2.453	-17.819	-16.006	291.425	15.877	66.832
165.645	-2.369	-17.830	-16.234	291.544	16.057	66.973
165.778	-2.288	-17.840	-16.454	291.657	16.234	67.107
165.903	-2.210	-17.850	-16.665	291.767	16.404	67.238
166.020	-2.135	-17.859	-16.869	291.872	16.571	67.362
166.130	-2.063	-17.868	-17.064	291.974	16.733	67.483
166.233	-1.993	-17.876	-17.254	292.070	16.891	67.598
166.330	-1.926	-17.883	-17.437	292.166	17.044	67.711
166.422	-1.860	-17.890	-17.615	292.256	17.195	67.819
166.508	-1.797	-17.897	-17.787	292.345	17.341	67.925
166.589	-1.735	-17.903	-17.954	292.429	17.484	68.026
166.666	-1.676	-17.908	-18.116	292.513	17.623	68.126
166.738	-1.617	-17.914	-18.273	292.595	17.759	68.223
166.806	-1.561	-17.919	-18.426	292.672	17.893	68.315
166.870	-1.506	-17.924	-18.575	292.749	18.023	68.407

					Угол	Угол
Наклонение	بع	n	широта	лолгота	Земля –	Солнце –
грал	ى тыс.км	ч, тыс.км	грал	грал	– CA –	– CA –
- 1			- 1	-1	– Венера,	– Венера,
166 021	1 452	17.029	19 720	202 824	град	град
100.931	-1.432	-17.928	-18.720	292.824	18.130	08.490
166.988	-1.400	-17.932	-18.863	292.895	18.276	68.582
167.042	-1.349	-17.936	-19.001	292.967	18.398	68.667
167.093	-1.299	-17.940	-19.136	293.036	18.518	68.750
167.142	-1.250	-17.943	-19.269	293.103	18.637	68.830
167.188	-1.202	-17.946	-19.399	293.170	18.753	68.910
167.231	-1.156	-17.950	-19.525	293.235	18.867	68.987
167.272	-1.110	-17.952	-19.651	293.297	18.980	69.062
167.310	-1.064	-17.955	-19.773	293.360	19.091	69.137
167.346	-1.020	-17.958	-19.892	293.422	19.200	69.211
167.381	-0.977	-17.960	-20.011	293.480	19.308	69.281
167.413	-0.934	-17.962	-20.127	293.540	19.414	69.353
167.444	-0.892	-17.965	-20.241	293.599	19.518	69.422
167.473	-0.850	-17.967	-20.353	293.656	19.621	69.491
167.500	-0.809	-17.968	-20.465	293.711	19.724	69.558
167.525	-0.769	-17.970	-20.574	293.767	19.825	69.624
167.549	-0.729	-17.972	-20.682	293.823	19.924	69.690
167.571	-0.690	-17.973	-20.788	293.877	20.023	69.756
167.592	-0.651	-17.975	-20.894	293.930	20.122	69.819
167.612	-0.613	-17.976	-20.999	293.983	20.219	69.882
167.630	-0.575	-17.977	-21.102	294.036	20.315	69.945
167.647	-0.537	-17.979	-21.204	294.088	20.410	70.008
167.662	-0.500	-17.980	-21.305	294.140	20.505	70.069
167.677	-0.463	-17.981	-21.406	294.189	20.600	70.129
167.690	-0.426	-17.982	-21.505	294.240	20.693	70.190
167.702	-0.390	-17.982	-21.604	294.291	20.787	70.250
167.713	-0.354	-17.983	-21.702	294.341	20.879	70.310
167.723	-0.318	-17.984	-21.801	294.389	20.972	70.368
167.731	-0.282	-17.984	-21.898	294.439	21.064	70.427
167.739	-0.246	-17.985	-21.994	294.488	21.156	70.486

					Угол	Угол
Наклонение	¥	n	UUUDOTA	полгота	Земля –	Солнце –
паклонение,	رى بى	Ц,	широта,	долгота,	– CA –	– CA –
трад	тыс.км	тыс.км	трад	трад	– Венера,	– Венера,
					град	град
167.745	-0.211	-17.985	-22.090	294.537	21.247	70.545
167.751	-0.175	-17.986	-22.186	294.586	21.339	70.603
167.755	-0.140	-17.986	-22.283	294.633	21.431	70.660
167.759	-0.105	-17.986	-22.378	294.682	21.522	70.718
167.761	-0.070	-17.987	-22.473	294.731	21.613	70.776
167.763	-0.035	-17.987	-22.568	294.779	21.704	70.834
167.763	0.000	-17.987	-22.663	294.828	21.795	70.892

Таблица 4.10. Район баллистической достижимости для окна стартов 2020 г.

Рисунок 4.6. Зависимость широты и долготы точки посадки (град) для окна стартов 2020 г.

Рисунок 4.7. Зависимость широты и долготы точки посадки (град) для окна стартов 2020 г. – толстая линия. Стрелка показывает ось вращения Венеры (остриё стрелки направлено на Север), показаны также экватор и меридианы для 0° и 180°. Отрезок соединяет центр Венеры и точку (0°, 0°).

Рисунок 4.8. Зависимость углов Земля – СА – Венера (град) и Солнце – СА –

Венера (град) от долготы точки посадки (град) для окна стартов 2020 г. Угол Земля – СА – Венера – сплошная линия; угол Солнце – СА – Венера – пунктирная линия.

4.3.3. Окно стартов 2021 г.

Таблица 4.11. Район баллистической достижимости для окна стартов 2021 г.

					Угол	Угол
Накланана	٤	~	UUUD OTO	нонгото	Земля –	Солнце –
паклонение,	5,		широта,	долгота,	– CA –	– CA –
трад	ТЫС.КМ	тыс.км	трад	трад	– Венера,	– Венера,
					град	град
8.727	0.058	13.721	9.941	205.573	164.645	103.447
8.737	0.116	13.720	9.736	205.693	164.671	103.328
8.753	0.174	13.720	9.530	205.811	164.696	103.210
8.777	0.232	13.719	9.324	205.931	164.715	103.090
8.807	0.290	13.718	9.118	206.050	164.732	102.971
8.843	0.349	13.716	8.911	206.170	164.744	102.849
8.886	0.407	13.715	8.704	206.292	164.752	102.727
8.936	0.466	13.713	8.495	206.412	164.758	102.606
8.993	0.525	13.711	8.287	206.534	164.758	102.482
9.056	0.585	13.708	8.077	206.657	164.753	102.357
9.126	0.644	13.706	7.865	206.780	164.747	102.232
9.203	0.704	13.703	7.653	206.904	164.735	102.105
9.286	0.765	13.699	7.439	207.028	164.721	101.978
9.376	0.826	13.696	7.224	207.155	164.700	101.849
9.473	0.887	13.692	7.007	207.283	164.675	101.717
9.577	0.949	13.688	6.787	207.410	164.647	101.586
9.687	1.012	13.683	6.567	207.541	164.613	101.452
9.805	1.075	13.679	6.343	207.671	164.576	101.317
9.929	1.139	13.673	6.118	207.804	164.532	101.179
10.060	1.203	13.668	5.891	207.939	164.484	101.039
10.199	1.268	13.662	5.660	208.074	164.431	100.899
10.344	1.334	13.656	5.427	208.213	164.372	100.754
10.497	1.401	13.649	5.191	208.352	164.309	100.610
10.657	1.469	13.642	4.952	208.494	164.239	100.460
10.825	1.538	13.634	4.708	208.637	164.165	100.310
11.000	1.607	13.626	4.463	208.784	164.082	100.156
11.183	1.678	13.618	4.212	208.932	163.995	100.000
11.375	1.750	13.609	3.958	209.085	163.900	99.840
11.574	1.823	13.599	3.700	209.240	163.798	99.676
11.781	1.897	13.589	3.437	209.397	163.691	99.511
11.997	1.973	13.578	3.170	209.558	163.574	99.340
12.222	2.050	13.567	2.897	209.721	163.452	99.167
12.456	2.129	13.555	2.618	209.888	163.321	98.990
12.700	2.209	13.542	2.335	210.060	163.181	98.807

					Угол	Угол
Hannanana	لا	~			Земля –	Солнце –
наклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	тыс.км	тыс.км	град	град	– Венера,	– Венера,
					град	град
12.953	2.291	13.528	2.045	210.235	163.033	98.621
13.216	2.375	13.514	1.749	210.415	162.874	98.429
13.489	2.460	13.498	1.446	210.599	162.708	98.233
13.774	2.548	13.482	1.137	210.789	162.529	98.030
14.069	2.637	13.465	0.819	210.983	162.342	97.823
14.377	2.729	13.447	0.493	211.182	162.143	97.610
14.696	2.823	13.427	0.160	211.388	161.931	97.388
15.029	2.919	13.407	-0.183	211.599	161.708	97.162
15.375	3.019	13.385	-0.536	211.817	161.472	96.928
15.735	3.121	13.361	-0.897	212.044	161.220	96.685
16.110	3.225	13.336	-1.271	212.276	160.956	96.435
16.500	3.333	13.310	-1.655	212.517	160.676	96.176
16.908	3.445	13.281	-2.051	212.767	160.378	95.906
17.332	3.559	13.251	-2.460	213.026	160.065	95.628
17.775	3.678	13.219	-2.883	213.294	159.733	95.339
18.238	3.800	13.184	-3.321	213.574	159.381	95.038
18.721	3.926	13.147	-3.774	213.864	159.009	94,725
19.227	4.057	13.107	-4.243	214.168	158.615	94.399
19.755	4 193	13 064	-4 730	214 484	158 196	94 059
20.309	4.334	13.018	-5.236	214.815	157.753	93.704
20.890	4.479	12.969	-5.761	215.161	157.283	93.332
21,499	4.631	12.916	-6.308	215.525	156.784	92,943
22.138	4.789	12.858	-6.878	215.907	156.254	92.535
22 810	4 953	12 796	-7 472	216 309	155 691	92 107
23 518	5 123	12.728	-8 093	216.732	155.092	91.656
24 263	5 301	12.655	-8 742	217 178	154 456	91 184
25 049	5 487	12.576	-9 421	217.652	153 778	90.684
25 878	5 681	12 489	-10 132	218 154	153 055	90.156
26 755	5 884	12 395	-10.879	218 686	152 286	89 600
27.683	6 095	12.292	-11 663	219 254	151 463	89.009
28 666	6 317	12.180	-12.487	219.859	150 586	88 383
29 709	6.549	12.057	-13 354	220 506	149 647	87 720
30.817	6 792	11 921	-14 268	221 201	148 643	87.013
31 996	7 047	11.773	-15 231	221.201	147 567	86 261
33 251	7 314	11.609	-16 247	222.754	146 413	85 458
34 589	7 594	11.009	-17 319	223 626	145 175	84 601
36.018	7 886	11.28	-18 452	224 572	143 846	83.685
37 544	8 193	11.006	-19.650	225 600	142 417	82 705
39 177	8 513	10 761	-20.914	226 724	140 880	81 654
40.926	8 846	10.488	-22 250	227.955	139 227	80 528
42 800	9 193	10.185	-23 660	229 307	137 447	79 319
44 808	9 553	9 849	_25.000	230 799	135 530	78 023
46 961	9 9 9 5	9 474	_26 704	232 450	133 466	76.632
49 270	10 306	9 058	_28 330	232.430	131 246	75 142
77.270	10.500	2.020	20.557	2JT.20J	131.240	13.144

					Угол	Угол
Hannanan	٤	~			Земля –	Солнце –
паклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
трад	ТЫС.КМ	ТЫС.КМ	град	трад	– Венера,	– Венера,
					град	град
51.742	10.695	8.595	-30.042	236.325	128.858	73.546
54.388	11.087	8.083	-31.808	238.604	126.296	71.843
57.214	11.478	7.517	-33.623	241.155	123.550	70.030
60.224	11.863	6.894	-35.469	244.014	120.617	68.108
63.421	12.234	6.211	-37.319	247.216	117.496	66.082
66.800	12.584	5.469	-39.140	250.799	114.188	63.961
70.353	12.902	4.667	-40.890	254.792	110.703	61.760
74.066	13.181	3.811	-42.515	259.214	107.054	59.498
77.918	13.409	2.906	-43.964	264.059	103.263	57.206
81.880	13.580	1.961	-45.175	269.299	99.357	54.913
85.920	13.685	0.988	-46.095	274.867	95.370	52.659
90.000	13.721	0.000	-46.682	280.662	91.340	50.484
94.080	13.685	-0.988	-46.910	286.555	87.305	48.427
98.120	13.580	-1.961	-46.777	292.402	83.307	46.528
102.082	13.409	-2.906	-46.302	298.068	79.383	44.817
105.933	13.181	-3.811	-45.525	303.440	75.566	43.318
109.646	12.902	-4.667	-44.494	308.440	71.885	42.045
113.199	12.584	-5.469	-43.266	313.027	68.361	41.002
116.578	12.234	-6.211	-41.897	317.187	65.008	40.183
119.774	11.863	-6.894	-40.433	320.933	61.835	39.573
122.784	11.478	-7.517	-38.918	324.290	58.846	39.154
125.609	11.087	-8.083	-37.386	327.292	56.039	38.903
128.254	10.695	-8.595	-35.861	329.975	53.411	38.795
130.727	10.306	-9.058	-34.363	332.375	50.954	38.806
133.034	9.925	-9.474	-32.907	334.526	48.660	38.917
135.187	9.553	-9.849	-31.501	336.460	46.519	39.107
137.195	9.193	-10.185	-30.149	338.200	44.522	39.355
139.068	8.846	-10.488	-28.857	339.775	42.658	39.652
140.816	8.513	-10.761	-27.623	341.202	40.918	39.982
142.449	8.193	-11.006	-26.448	342.501	39.292	40.338
143.975	7.886	-11.228	-25.331	343.688	37.772	40.711
145.403	7.594	-11.428	-24.267	344.773	36.350	41.092
146./41	7.314	-11.609	-23.258	345.771	35.016	41.481
147.995	/.04/	-11.//3	-22.299	346.691	33.765	41.870
149.173	6.792	-11.921	-21.386	347.540	32.590	42.256
150.281	6.549	-12.05/	-20.519	348.329	31.485	42.640
151.324	6.317	-12.180	-19.694	349.062	30.443	43.018
152.306	6.095	-12.292	-18.909	349.745	29.461	43.389
153.234	5.884	-12.395	-18.160	350.384	28.534	43./52
154.110	5.681	-12.489	-1/.445	350.982	27.657	44.107
154.939	5.487	-12.5/6	-16./63	351.543	26.827	44.454
155./24	5.301	-12.655	-16.111	352.071	26.040	44./91
150.469	5.123	-12./28	-13.48/	352.569	25.293	45.120
157.175	4.953	-12.796	-14.890	353.040	24.583	45.439

					Угол	Угол
Hannanana	د				Земля –	Солнце –
наклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	тыс.км	тыс.км	град	град	– Венера,	– Венера,
					град	град
157.847	4.789	-12.858	-14.317	353.485	23.908	45.750
158.486	4.631	-12.916	-13.767	353.908	23.265	46.052
159.094	4.479	-12.969	-13.239	354.309	22.652	46.346
159.674	4.334	-13.018	-12.732	354.692	22.066	46.634
160.228	4.193	-13.064	-12.242	355.056	21.507	46.911
160.756	4.057	-13.107	-11.771	355.403	20.973	47.182
161.261	3.926	-13.147	-11.316	355.736	20.462	47.445
161.743	3.800	-13.184	-10.878	356.055	19.971	47.702
162.206	3.678	-13.219	-10.453	356.360	19.501	47.952
162.648	3.559	-13.251	-10.043	356.653	19.050	48.195
163.072	3.445	-13.281	-9.646	356.936	18.616	48.433
163.479	3.333	-13.310	-9.260	357.207	18.200	48.664
163.869	3.225	-13.336	-8.887	357.470	17.799	48.891
164.243	3.121	-13.361	-8.524	357.722	17.414	49.111
164.603	3.019	-13.385	-8.171	357.966	17.043	49.326
164.948	2.919	-13.407	-7.829	358.203	16.684	49.538
165.280	2.823	-13.427	-7.494	358.431	16.340	49,744
165 599	2 729	-13447	-7 169	358 653	16 006	49 946
165 906	2 637	-13 465	-6 852	358 868	15 686	50 143
166 201	2.548	-13482	-6.543	359 078	15 375	50 338
166 485	2.460	-13.498	-6 240	359.280	15.076	50 527
166 757	2 375	-13 514	-5 945	359 479	14 785	50 714
167 020	2 291	-13 528	-5 655	359 671	14 506	50 896
167.272	2,209	-13 542	-5 373	359.859	14 235	51 077
167.515	2.129	-13 555	-5 095	0.042	13 973	51 253
167.749	2.050	-13 567	-4 823	0.222	13 719	51 427
167.973	1 973	-13 578	-4 556	0.396	13 475	51 598
168 188	1.975	-13 589	-4 295	0.590	13.173	51.767
168 395	1.823	-13 599	-4 037	0.734	13.008	51 932
168 594	1.029	-13 609	-3 785	0.899	12,785	52,096
168 784	1.730	-13.618	-3 537	1 061	12.769	52.258
168.967	1.607	-13.676	-3.291	1 218	12.362	52.416
169.142	1.538	-13.634	-3.050	1 375	12.362	52.574
169.309	1.550	-13.631	-2 812	1.576	11 966	52 729
169.468	1 401	-13.649	-2.578	1.677	11.777	52.883
169.621	1 334	-13.656	-2 346	1.874	11.596	53.034
169.766	1.351	-13.662	_2.310	1.021	11.590	53 185
169 904	1.200	-13.668	_1.892	2 114	11.419	53 335
170.035	1 1 3 9	-13 673	-1 668	2.111	11.086	53 481
170.158	1.135	-13.679	_1 447	2.255	10.927	53 628
170.138	1.073	_13.683	_1 229	2.575	10.727	53 774
170.385	0.949	_13.688	_1.22)	2.554	10.774	53 917
170.385	0.887	-13.602	_0.797	2.005	10.027	54.061
170.489	0.837	12 606	-0.797	2.803	10.487	54.001
1/0.363	0.820	-13.090	-0.383	2.937	10.555	34.202

Наклонение,	ξ, τыс.км	η, тыс.км	широта, град	долгота, град	Угол Земля – – СА –	Угол Солнце – – СА –
1 / 1			1 / 1	1 ''	– Венера, град	– Венера, град
170.675	0.765	-13.699	-0.372	3.070	10.222	54.344
170.758	0.704	-13.703	-0.162	3.202	10.098	54.486
170.834	0.644	-13.706	0.048	3.331	9.980	54.625
170.904	0.585	-13.708	0.255	3.460	9.866	54.765
170.967	0.525	-13.711	0.461	3.589	9.758	54.904
171.023	0.466	-13.713	0.667	3.715	9.657	55.042
171.073	0.407	-13.715	0.871	3.842	9.560	55.181
171.116	0.349	-13.716	1.076	3.967	9.471	55.318
171.152	0.290	-13.718	1.279	4.092	9.385	55.456
171.182	0.232	-13.719	1.482	4.218	9.305	55.594
171.205	0.174	-13.720	1.685	4.341	9.233	55.731
171.222	0.116	-13.720	1.887	4.465	9.165	55.869
171.232	0.058	-13.721	2.088	4.589	9.102	56.007
171.235	0.000	-13.721	2.291	4.711	9.047	56.144

Рисунок 4.9. Зависимость широты и долготы точки посадки (град) для окна стартов 2021 г.

Рисунок 4.10 – Зависимость широты и долготы точки посадки (град) для окна стартов 2021 г. – толстая линия. Стрелка показывает ось вращения Венеры (остриё стрелки направлено на Север), показаны также экватор и меридианы для 0° и 180°. Отрезок соединяет центр Венеры и точку (0°, 0°).

Рисунок 4.11. Зависимость углов Земля – СА – Венера (град) и Солнце – СА – Венера (град) от долготы точки посадки (град) для окна стартов 2021 г. Угол Земля – СА – Венера – сплошная линия; угол Солнце – СА – Венера – пунктирная линия.

4.3.4. Окно стартов 2023 г.

			Угол	Угол
Hauganana K			Земля –	Солнце –
Наклонение, ζ , η ,	широта,	долгота,	– CA –	– CA –
Град Тыс. км тыс. км	и град	град	– Венера,	– Венера,
			град	град
8.214 -0.042 17.061	-21.147	181.728	159.194	113.611
8.218 -0.083 17.061	-21.023	181.779	159.300	113.578
8.224 -0.125 17.061	-20.899	181.828	159.406	113.546
8.232 -0.166 17.060) –20.776	181.880	159.512	113.512
8.243 -0.208 17.060) -20.651	181.929	159.619	113.479
8.256 -0.250 17.059	-20.527	181.981	159.724	113.445
8.271 -0.292 17.059) -20.402	182.031	159.830	113.411
8.289 -0.334 17.058	3 -20.276	182.083	159.936	113.376
8.310 -0.377 17.057	/ -20.150	182.134	160.043	113.342
8.333 -0.419 17.056	5 -20.024	182.186	160.148	113.306
8.358 -0.462 17.055	5 –19.896	182.237	160.255	113.271
8.386 -0.505 17.054	-19.768	182.291	160.361	113.234
8.417 -0.549 17.052	2 -19.638	182.343	160.469	113.198
8.450 -0.593 17.051	-19.508	182.397	160.576	113.160
8.486 -0.637 17.049	-19.377	182.450	160.684	113.123
8.525 -0.681 17.048	3 -19.245	182.505	160.792	113.083
8.567 -0.726 17.046	5 –19.111	182.559	160.902	113.045
8.611 -0.772 17.044	-18.976	182.616	161.011	113.005
8.659 -0.818 17.042	2 -18.839	182.671	161.122	112.965
8.710 -0.865 17.039	-18.701	182.729	161.232	112.923
8.763 -0.912 17.037	-18.561	182.786	161.344	112.881
8.821 -0.959 17.034	-18.419	182.843	161.457	112.839
8.881 -1.008 17.031	-18.275	182.903	161.570	112.795
8.945 -1.057 17.028	3 -18.129	182.963	161.685	112.751
9.012 -1.107 17.025	5 -17.982	183.025	161.800	112.704
9.084 -1.157 17.022	2 -17.831	183.086	161.917	112.658
9.159 -1.209 17.018	3 -17.678	183.149	162.035	112.611
9.238 -1.261 17.014	-17.523	183.214	162.154	112.561
9.321 -1.314 17.010) -17.365	183.279	162.274	112.511
9.409 -1.369 17.006	6 -17.204	183.347	162.395	112.458
9.501 -1.424 17.002	2 -17.040	183.415	162.519	112.406
9.598 -1.481 16.997	-16.872	183.484	162.644	112.352
9.699 -1.538 16.992	2 -16.701	183.556	162.769	112.295
9.806 -1.597 16.986	5 -16.526	183.629	162.897	112.237
9.918 -1.657 16.980) -16.347	183.703	163.026	112.178
10.036 -1.719 16.974	-16.163	183.779	163.158	112.117
10.160 -1.782 16.968	3 -15.976	183.859	163.289	112.053
10.290 -1.847 16.961	-15.783	183.939	163.424	111.987
10.426 -1.914 16.953	3 -15.586	184.022	163.561	111.920
10.570 -1.982 16.946	-15.383	184.107	163.699	111.850

Таблица 4.12. Район баллистической достижимости для окна стартов 2023 г.

97

					Угол	Угол
Hannanana	لا	~		HO HEOTO	Земля –	Солнце –
наклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	тыс. км	тыс. км	град	град	– Венера,	– Венера,
					град	град
10.721	-2.052	16.937	-15.174	184.196	163.838	111.775
10.879	-2.125	16.928	-14.959	184.286	163.981	111.700
11.045	-2.199	16.919	-14.738	184.380	164.125	111.621
11.221	-2.276	16.909	-14.509	184.476	164.271	111.539
11.405	-2.356	16.898	-14.274	184.576	164.419	111.454
11.599	-2.438	16.886	-14.030	184.680	164.569	111.365
11.804	-2.522	16.874	-13.777	184.787	164.720	111.272
12.019	-2.610	16.860	-13.516	184.899	164.873	111.174
12.246	-2.701	16.846	-13.245	185.015	165.028	111.072
12.486	-2.796	16.830	-12.963	185.136	165.183	110.964
12.739	-2.894	16.814	-12.670	185.260	165.341	110.853
13.007	-2.997	16.796	-12.365	185.392	165.498	110.734
13.291	-3.103	16.777	-12.047	185.530	165.655	110.609
13.591	-3.215	16.756	-11.716	185.674	165.811	110.476
13.909	-3.331	16.733	-11.368	185.824	165.967	110.337
14.247	-3.453	16.708	-11.004	185.984	166.119	110.188
14.606	-3.581	16.681	-10.622	186.150	166.269	110.031
14.988	-3.715	16.652	-10.222	186.328	166.412	109.863
15.395	-3.856	16.620	-9.800	186.514	166.549	109.684
15.830	-4.004	16.585	-9.354	186.711	166.678	109.493
16.294	-4.161	16.546	-8.884	186.921	166.794	109.288
16.791	-4.327	16.503	-8.386	187.144	166.894	109.068
17.324	-4.502	16.456	-7.858	187.383	166.975	108.830
17.896	-4.689	16.404	-7.297	187.638	167.032	108.573
18.513	-4.887	16.346	-6.698	187.911	167.059	108.296
19.178	-5.098	16.282	-6.059	188.207	167.047	107.993
19.897	-5.323	16.209	-5.375	188.524	166.991	107.663
20.676	-5.565	16.128	-4.640	188.869	166.879	107.303
21.523	-5.824	16.036	-3.849	189.244	166.700	106.906
22.446	-6.102	15.933	-2.995	189.653	166.442	106.470
23.454	-6.402	15.814	-2.071	190.104	166.087	105.985
24.559	-6.727	15.679	-1.067	190.599	165.624	105.447
25.774	-7.078	15.524	0.027	191.146	165.032	104.847
27.115	-7.459	15.344	1.223	191.757	164.291	104.174
28.599	-7.874	15.135	2.534	192.441	163.378	103.414
30.249	-8.326	14.892	3.975	193.214	162.270	102.552
32.089	-8.819	14.605	5.568	194.089	160.943	101.573
34.148	-9.357	14.267	7.330	195.091	159.362	100.452
36.462	-9.943	13.864	9.285	196.249	157.495	99.162
39.071	-10.581	13.384	11.460	197.594	155.303	97.674
42.020	-11.272	12.807	13.878	199.177	152.741	95.948
45.360	-12.015	12.113	16.564	201.055	149.762	93.941
49.146	-12.803	11.277	19.537	203.309	146.314	91.605
53.431	-13.623	10.271	22.802	206.035	142.348	88.893

					Угол	Угол
Hannanan	٤				Земля –	Солнце –
паклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	тыс. км	тыс. км	град	град	– Венера,	– Венера,
					град	град
58.259	-14.451	9.069	26.340	209.365	137.820	85.758
63.658	-15.250	7.650	30.088	213.455	132.709	82.168
69.620	-15.970	6.004	33.925	218.484	127.026	78.118
76.086	-16.550	4.146	37.658	224.616	120.832	73.650
82.937	-16.929	2.120	41.015	231.947	114.249	68.856
90.000	-17.061	0.000	43.695	240.392	107.454	63.884
97.062	-16.929	-2.120	45.441	249.610	100.659	58.917
103.914	-16.550	-4.146	46.137	259.015	94.074	54.144
110.379	-15.970	-6.004	45.847	267.971	87.874	49.724
116.340	-15.250	-7.650	44.778	276.002	82.176	45.763
121.738	-14.451	-9.069	43.187	282.901	77.034	42.315
126.565	-13.623	-10.271	41.308	288.675	72.455	39.380
130.848	-12.803	-11.277	39.318	293.452	68.411	36.932
134.633	-12.015	-12.113	37.332	297.393	64.856	34.917
137.972	-11.272	-12.807	35.420	300.659	61.734	33.283
140.920	-10.581	-13.384	33.618	303.383	58.992	31.970
143 527	-9 943	-13 864	31 941	305 674	56 579	30 926
145 840	-9 357	-14 267	30 391	307 619	54 448	30 102
147 898	-8 819	-14 605	28 966	309 285	52 560	29 457
149 737	-8 326	-14 892	27 657	310 723	50 881	28 958
151 385	-7 874	-15 135	26 453	311 976	49 382	28.574
152 868	-7 459	-15 344	25 347	313 076	48.037	28 286
154 208	-7 078	-15 524	24 329	314 048	46 827	28.072
155 422	-6 727	-15 679	23 390	314 912	45 733	27 918
156 526	-6 402	-15 814	22.522	315.686	44 740	27.813
157 533	-6.102	-15 933	21 717	316 382	43 837	27.745
158 454	-5 824	-16.036	20.970	317.012	43 011	27.708
159 300	-5 565	-16128	20.276	317 586	42.253	27.698
160.078	-5 323	-16209	19.627	318 109	41 556	27.705
160.796	-5 098	-16282	19.027	318 589	40.913	27.709
161 460	-4 887	-16346	18 453	319.030	40 319	27.764
162.075	-4 689	-16404	17 919	319.438	39 767	27.810
162.647	-4 502	-16 456	17.919	319.816	39 254	27.863
163 179	-4 327	-16503	16 944	320 168	38 775	27.003
163.674	-4 161	-16546	16 497	320.495	38 327	27.986
164 138	_4 004	-16585	16.074	320.803	37 907	28.055
164 571	-3 856	-16.620	15.672	321.090	37.507	28.125
164 977	-3 715	-16.652	15 291	321.362	37.142	28.125
165 358	-3 581	-16.681	14 928	321.502	36 793	28.271
165 716	_3 453	-16708	14.520	321.013	36 463	28.271
166.053	_3 331	-16 733	14.362	322.083	36 151	28.340
166 370	_3 215	_16.755	13.036	322.005	35.854	28.420
166 669	-3.213	-16.750	13.63/	322.277	35 573	28.470
166.052	-3.104	-10.777	12 244	322.303	35.375	28.572
100.932	-2.77/	-10./90	13.344	322.700	55.505	20.040

				Угол	Угол
Harranan 5	~			Земля –	Солнце –
наклонение, ζ ,	η,	широта,	долгота,	– CA –	– CA –
Град Тыс. км	тыс. км	град	град	– Венера,	– Венера,
				град	град
167.219 –2.894	-16.814	13.066	322.886	35.050	28.723
167.471 –2.796	-16.831	12.798	323.062	34.807	28.795
167.710 -2.701	-16.846	12.540	323.232	34.575	28.869
167.937 –2.610	-16.860	12.292	323.395	34.352	28.942
168.151 –2.522	-16.874	12.053	323.551	34.139	29.015
168.355 –2.438	-16.886	11.821	323.700	33.935	29.086
168.548 -2.356	-16.898	11.598	323.844	33.739	29.157
168.732 –2.276	-16.909	11.382	323.985	33.549	29.228
168.906 –2.199	-16.919	11.172	324.118	33.367	29.297
169.072 -2.125	-16.928	10.968	324.247	33.192	29.366
169.229 -2.052	-16.937	10.770	324.372	33.023	29.433
169.379 -1.982	-16.946	10.577	324.492	32.860	29.499
169.522 -1.914	-16.954	10.391	324.611	32.701	29.567
169.658 -1.847	-16.961	10.208	324.724	32.549	29.632
169.787 -1.782	-16.968	10.031	324.834	32.401	29.696
169.910 -1.719	-16.974	9.857	324.941	32.258	29.759
170.027 -1.657	-16.980	9.688	325.046	32.117	29.823
170.139 -1.597	-16.986	9.522	325.147	31.982	29.885
170.245 -1.538	-16.992	9.360	325.245	31.851	29.947
170.346 -1.481	-16.997	9.203	325.343	31.722	30.009
170.442 -1.424	-17.002	9.047	325.437	31.597	30.069
170.534 -1.369	-17.006	8.894	325.528	31.476	30.128
170.621 -1.314	-17.010	8.746	325.619	31.356	30.189
170.704 -1.261	-17.015	8.599	325.707	31.241	30.248
170.782 -1.209	-17.018	8.455	325.794	31.127	30.307
170.857 -1.157	-17.022	8.313	325.878	31.016	30.365
170.927 -1.107	-17.025	8.173	325.961	30.908	30.422
170.995 -1.057	-17.028	8.036	326.043	30.801	30.480
171.058 -1.008	-17.031	7.900	326.123	30.697	30.536
171.118 -0.959	-17.034	7.767	326.203	30.595	30.594
171.175 -0.912	-17.037	7.635	326.279	30.495	30.649
171.228 -0.865	-17.039	7.505	326.357	30.396	30.706
171.278 -0.818	-17.042	7.376	326.431	30.299	30.761
171.326 -0.772	-17.044	7.249	326.507	30.203	30.818
171.370 -0.726	-17.046	7.123	326.579	30.110	30.872
171.411 -0.681	-17.048	6.999	326.652	30.017	30.928
171.450 -0.637	-17.049	6.875	326.723	29.927	30.982
171.486 -0.593	-17.051	6.753	326.795	29.837	31.038
171.519 -0.549	-17.052	6.631	326.864	29.749	31.092
171.549 -0.505	-17.054	6.511	326.934	29.661	31.148
171.577 -0.462	-17.055	6.390	327.002	29.575	31.202
171.602 -0.419	-17.056	6.272	327.071	29.490	31.257
171.625 -0.377	-17.057	6.153	327.138	29.406	31.311
171.645 -0.334	-17.058	6.036	327.206	29.322	31.367

					Угол	Угол
Наклонение	بر	n	широта	лолгота	Земля –	Солнце –
град	יכ דער געע	ין, דו ני גיא	пирота,	долгота,	– CA –	– CA –
трад	THC. IM	I DIC. KWI	трад	трад	– Венера,	– Венера,
					град	град
171.663	-0.292	-17.059	5.918	327.272	29.240	31.421
171.678	-0.250	-17.059	5.801	327.339	29.158	31.476
171.691	-0.208	-17.060	5.684	327.404	29.077	31.531
171.702	-0.166	-17.060	5.569	327.470	28.996	31.587
171.710	-0.125	-17.061	5.452	327.535	28.917	31.641
171.716	-0.083	-17.061	5.337	327.601	28.837	31.698
171.720	-0.042	-17.061	5.220	327.665	28.760	31.753
171.721	0.000	-17.061	5.105	327.730	28.681	31.810

Рисунок 4.3.12. Зависимость широты и долготы точки посадки (град) для окна стартов 2023 г.

Рисунок 4.3.13. Зависимость широты и долготы точки посадки (град) для окна стартов 2023 г. – толстая линия. Стрелка показывает ось вращения Венеры (остриё стрелки направлено на Север), показаны также экватор и меридианы для 0° и 180°. Отрезок соединяет центр Венеры и точку (0°, 0°).

Рисунок 4.14. Зависимость углов Земля – СА – Венера (град) и Солнце – СА – Венера (град) от долготы точки посадки (град) для окна стартов 2023 г. Угол Земля – СА – Венера – сплошная линия; угол Солнце – СА – Венера – пунктирная линия.

4.3.5. Окно стартов 2024 г.

					Угол	Угол
Hannanan	٤	n	HUHDOTO	TOTFOTO	Земля –	Солнце –
паклонение,	رى TI IO IOM	ц, тно им	широта,	долгота,	– CA –	– CA –
трад	тыс.км	I BU.KM	трад	Трад	– Венера,	– Венера,
					град	град
1.491	-0.001	22.918	21.996	182.948	121.124	54.510
1.491	-0.003	22.918	21.999	182.949	121.124	54.511
1.491	-0.004	22.918	22.002	182.949	121.123	54.512
1.491	-0.006	22.918	22.005	182.950	121.122	54.512
1.491	-0.007	22.918	22.008	182.950	121.121	54.513
1.491	-0.008	22.918	22.012	182.951	121.120	54.514
1.491	-0.010	22.918	22.015	182.951	121.119	54.515
1.491	-0.011	22.918	22.018	182.952	121.118	54.516
1.491	-0.013	22.918	22.021	182.952	121.117	54.517

Таблица 4.13. Район баллистической достижимости для окна стартов 2024 г.

					Угол	Угол
Hannanan	٤	~			Земля –	Солнце –
паклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	ТЫС.КМ	ТЫС.КМ	град	град	– Венера,	– Венера,
					град	град
1.491	-0.014	22.918	22.024	182.952	121.116	54.517
1.491	-0.016	22.918	22.028	182.953	121.115	54.518
1.491	-0.017	22.918	22.031	182.953	121.114	54.519
1.491	-0.019	22.918	22.034	182.954	121.113	54.520
1.491	-0.020	22.918	22.038	182.954	121.112	54.521
1.492	-0.022	22.918	22.041	182.955	121.111	54.522
1.492	-0.023	22.918	22.045	182.955	121.110	54.523
1.492	-0.025	22.918	22.048	182.956	121.109	54.524
1.492	-0.026	22.918	22.051	182.956	121.108	54.525
1.492	-0.028	22.918	22.055	182.957	121.107	54.526
1.492	-0.029	22.918	22.059	182.957	121.105	54.526
1.493	-0.031	22.918	22.062	182.958	121.104	54.527
1.493	-0.033	22.918	22.066	182.958	121.103	54.528
1.493	-0.034	22.918	22.069	182.959	121.102	54.529
1.493	-0.036	22.918	22.073	182.959	121.101	54.530
1.493	-0.038	22.918	22.077	182.960	121.100	54.531
1.494	-0.039	22.918	22.081	182,960	121.099	54.532
1 494	-0.041	22 918	22 085	182 963	121.096	54 532
1 494	-0.043	22 918	22 089	182 963	121.094	54 533
1.495	-0.045	22.918	22.093	182.964	121.093	54.534
1.495	-0.047	22.918	22.097	182.964	121.092	54.535
1.495	-0.048	22.918	22.101	182.965	121.091	54.536
1.496	-0.050	22.918	22.106	182,966	121.089	54.537
1 496	-0.052	22 918	22 110	182 966	121 088	54 538
1 496	-0.054	22 918	22 115	182 967	121.087	54 540
1.497	-0.056	22.918	22.119	182.967	121.085	54.541
1 497	-0.059	22 918	22 124	182 968	121.084	54 542
1 498	-0.061	22 918	22 129	182 969	121.082	54 543
1 498	-0.063	22 918	22 134	182 970	121.081	54 545
1 499	-0.065	22.918	22.139	182.970	121.079	54 546
1.500	-0.068	22 918	22 144	182 971	121.077	54 547
1.500	-0.070	22 918	22 150	182 972	121.076	54 549
1.501	-0.073	22.918	22.156	182.973	121.074	54.550
1.502	-0.075	22.918	22.161	182.973	121.072	54.552
1.503	-0.078	22.918	22.167	182.974	121.070	54.553
1.504	-0.081	22.918	22.174	182.975	121.069	54.555
1.504	-0.084	22.918	22,180	182,976	121.067	54.557
1.505	-0.086	22.918	22.187	182.977	121.064	54.559
1.507	-0.090	22.918	22,194	182.978	121.062	54.560
1.508	-0.093	22.918	22.201	182,979	121.060	54.562
1.509	-0.096	22 918	22 208	182 980	121.058	54 564
1.510	-0.100	22 918	22 216	182 981	121.055	54 566
1.512	-0.103	22 918	22 224	182 984	121.051	54 567
1.513	-0.107	22.918	22.233	182.985	121.049	54.569
1.010	0.107			102.708	1=1.012	2 2 0 /

					Угол	Угол
Hannanana	لا				Земля –	Солнце –
наклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	тыс.км	Тыс.км	град	град	– Венера,	– Венера,
					град	град
1.515	-0.111	22.918	22.242	182.986	121.046	54.571
1.517	-0.115	22.917	22.251	182.988	121.043	54.574
1.519	-0.120	22.917	22.261	182.989	121.040	54.577
1.521	-0.124	22.917	22.271	182.991	121.037	54.579
1.524	-0.129	22.917	22.282	182.992	121.033	54.582
1.527	-0.134	22.917	22.294	182.994	121.030	54.585
1.530	-0.140	22.917	22.306	182.995	121.026	54.589
1.533	-0.145	22.917	22.319	182.997	121.022	54.592
1.537	-0.152	22.917	22.333	182.999	121.018	54.596
1.541	-0.158	22.917	22.348	183.001	121.013	54.600
1.545	-0.165	22.917	22.363	183.006	121.006	54.602
1.550	-0.173	22.917	22.381	183.008	121.001	54.607
1.556	-0.181	22.917	22.399	183.011	120.995	54.611
1.563	-0.190	22.917	22.419	183.013	120.989	54.617
1.570	-0.200	22.917	22,440	183.016	120.983	54.622
1.578	-0.210	22.917	22.464	183.020	120.975	54.629
1.588	-0.222	22,917	22,490	183.025	120.965	54.634
1.599	-0.234	22 917	22 518	183 029	120.957	54 641
1 612	-0.248	22 916	22 549	183 034	120.947	54 650
1.628	-0.264	22,916	22.584	183.039	120.936	54.659
1.646	-0.281	22,916	22.623	183.047	120.922	54.668
1.667	-0.301	22.916	22.668	183.053	120.908	54.679
1.693	-0.323	22.915	22.718	183.060	120.892	54.693
1 724	-0 349	22 915	22 776	183 071	120 872	54 706
1 763	-0 379	22 915	22 844	183 080	120.850	54 724
1.812	-0.415	22.914	22.923	183.094	120.823	54.744
1.875	-0.457	22 913	23 018	183 108	120.792	54 769
1 956	-0.509	22 912	23 134	183 128	120 753	54 799
2 064	-0.574	22 911	23 279	183 151	120 704	54 836
2 213	-0.656	22 908	23 465	183 184	120.640	54 882
2 424	-0.767	22 905	23 712	183 226	120.554	54 945
2 738	-0.921	22 899	24 057	183 285	120.434	55 035
3.238	-1.152	22.889	24.574	183.377	120.248	55.168
4.114	-1.535	22.866	25.432	183.539	119.929	55.390
5.937	-2.298	22.802	27.138	183.886	119.256	55.839
11.487	-4.529	22,466	32.131	185.143	116.992	57.192
90,000	-22.918	0.000	58,465	289.050	61.828	74.162
168.465	-4.529	-22.466	-8.858	310.643	9.511	79.389
173.967	-2.298	-22.802	-13.897	309.852	13.524	78.818
175.747	-1.535	-22.866	-15.597	309.527	15.003	78.593
176 586	-1 152	-22 889	-16 449	309 352	15 759	78 473
177.055	-0.921	-22 899	-16 961	309 243	16 217	78 400
177 344	-0.767	-22.905	-17302	309 170	16.524	78 350
177.534	-0.656	-22.908	-17.546	309.115	16.744	78.313
1,,,00	0.000		17.010	207.110		, 0.010

					Угол	Угол
Hannanana	لا	~			Земля –	Солнце –
паклонение,	ς,	П, тьо как	широта,	долгота,	– CA –	– CA –
трад	ТЫС.КМ	ТЫС.КМ	трад	трад	– Венера,	– Венера,
					град	град
177.666	-0.574	-22.911	-17.729	309.074	16.910	78.286
177.761	-0.509	-22.912	-17.872	309.042	17.040	78.265
177.832	-0.457	-22.913	-17.987	309.015	17.143	78.246
177.885	-0.415	-22.914	-18.081	308.995	17.229	78.233
177.927	-0.379	-22.915	-18.159	308.976	17.299	78.220
177.960	-0.349	-22.915	-18.225	308.962	17.360	78.211
177.986	-0.323	-22.916	-18.282	308.948	17.412	78.202
178.008	-0.301	-22.916	-18.332	308.936	17.457	78.194
178.026	-0.281	-22.916	-18.375	308.926	17.497	78.187
178.040	-0.264	-22.916	-18.414	308.918	17.532	78.182
178.053	-0.248	-22.916	-18.448	308.910	17.564	78.177
178.064	-0.234	-22.917	-18.479	308.902	17.592	78.172
178.073	-0.222	-22.917	-18.507	308.896	17.617	78.167
178.081	-0.210	-22.917	-18.532	308.889	17.640	78.163
178.088	-0.200	-22.917	-18.555	308.884	17.661	78.159
178.094	-0.190	-22.917	-18.577	308.879	17.680	78.156
178.099	-0.181	-22.917	-18.596	308.874	17.698	78.152
178.104	-0.173	-22.917	-18.615	308.871	17.715	78.151
178.108	-0.165	-22.917	-18.631	308.867	17.731	78.149
178.111	-0.158	-22.917	-18.647	308.863	17.745	78.146
178.115	-0.152	-22.917	-18.661	308.860	17.758	78.144
178.118	-0.145	-22.917	-18.675	308.856	17.770	78.141
178.120	-0.140	-22.917	-18.688	308.853	17.782	78.139
178.123	-0.134	-22.917	-18.700	308.850	17.793	78.137
178.125	-0.129	-22.917	-18.711	308.847	17.803	78.135
178.127	-0.124	-22.917	-18.722	308.845	17.813	78.134
178.129	-0.120	-22.917	-18.732	308.842	17.822	78.132
178.130	-0.115	-22.918	-18.742	308.840	17.831	78.130
178.132	-0.111	-22.918	-18.751	308.838	17.840	78.129
178.133	-0.107	-22.918	-18.760	308.835	17.848	78.127
178.135	-0.103	-22.918	-18.768	308.833	17.855	78.126
178.136	-0.100	-22.918	-18.776	308.831	17.862	78.125
178.137	-0.096	-22.918	-18.784	308.830	17.869	78.123
178.138	-0.093	-22.918	-18.791	308.828	17.876	78.122
178.139	-0.090	-22.918	-18.799	308.828	17.883	78.123
178.140	-0.086	-22.918	-18.805	308.826	17.890	78.122
178.141	-0.084	-22.918	-18.812	308.825	17.896	78.120
178.141	-0.081	-22.918	-18.818	308.823	17.901	78.119
178.142	-0.078	-22.918	-18.824	308.821	17.907	78.118
178.143	-0.075	-22.918	-18.830	308.820	17.912	78.117
178.143	-0.073	-22.918	-18.836	308.819	17.918	78.116
178.144	-0.070	-22.918	-18.841	308.817	17.923	78.116
178.144	-0.068	-22.918	-18.847	308.816	17.927	78.115
178.145	-0.065	-22.918	-18.852	308.815	17.932	78.114

					Угол	Угол
Harmanara	د				Земля –	Солнце –
наклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
трад	тыс.км	тыс.км	град	град	– Венера,	– Венера,
					град	град
178.145	-0.063	-22.918	-18.857	308.813	17.937	78.113
178.146	-0.061	-22.918	-18.862	308.812	17.941	78.112
178.146	-0.059	-22.918	-18.867	308.811	17.946	78.111
178.147	-0.056	-22.918	-18.871	308.810	17.950	78.111
178.147	-0.054	-22.918	-18.876	308.809	17.954	78.110
178.147	-0.052	-22.918	-18.880	308.808	17.958	78.109
178.148	-0.050	-22.918	-18.885	308.806	17.962	78.108
178.148	-0.048	-22.918	-18.889	308.805	17.966	78.108
178.148	-0.047	-22.918	-18.893	308.804	17.970	78.107
178.148	-0.045	-22.918	-18.897	308.803	17.974	78.106
178.149	-0.043	-22.918	-18.901	308.802	17.977	78.106
178.149	-0.041	-22.918	-18.905	308.801	17.981	78.105
178.149	-0.039	-22.918	-18.909	308.800	17.984	78.104
178.149	-0.038	-22.918	-18.913	308.799	17.988	78.104
178.150	-0.036	-22.918	-18.917	308.798	17.991	78.103
178.150	-0.034	-22.918	-18.920	308.798	17.995	78.102
178.150	-0.033	-22.918	-18.924	308.797	17.998	78.102
178.150	-0.031	-22.918	-18.927	308.796	18.001	78.101
178.150	-0.029	-22.918	-18.931	308.795	18.004	78.101
178.150	-0.028	-22.918	-18.934	308.794	18.008	78.100
178.150	-0.026	-22.918	-18.938	308.793	18.011	78.099
178.151	-0.025	-22.918	-18.941	308.792	18.014	78.099
178.151	-0.023	-22.918	-18.945	308.791	18.017	78.098
178.151	-0.022	-22.918	-18.948	308.791	18.020	78.098
178.151	-0.020	-22.918	-18.951	308.790	18.023	78.097
178.151	-0.019	-22.918	-18.955	308.789	18.026	78.097
178.151	-0.017	-22.918	-18.958	308.788	18.029	78.096
178.151	-0.016	-22.918	-18.961	308.787	18.032	78.096
178.151	-0.014	-22.918	-18.964	308.787	18.035	78.095
178.151	-0.013	-22.918	-18.967	308.786	18.038	78.094
178.151	-0.011	-22.918	-18.971	308.785	18.041	78.094
178.151	-0.010	-22,918	-18,974	308.784	18.044	78.093
178.151	-0.008	-22.918	-18.977	308.783	18.046	78.093
178.151	-0.007	-22,918	-18,980	308.783	18.049	78.092
178.151	-0.006	-22.918	-18.983	308.782	18.052	78.092
178.151	-0.004	-22.918	-18.987	308,783	18.056	78.093
178 151	-0.003	-22 918	-18 990	308.782	18.059	78,093
178 151	-0.001	-22 918	-18 993	308 781	18.061	78 092
178.151	0.000	-22.918	-18.996	308.781	18.064	78.092

Рисунок 4.15. Зависимость широты и долготы точки посадки (град) для окна стартов 2024 г.

Рисунок 4.16. Зависимость широты и долготы точки посадки (град) для окна стартов 2024 г. – толстая линия. Стрелка показывает ось вращения Венеры (остриё стрелки направлено на Север), показаны также экватор и меридианы для 0° и 180°. Отрезок соединяет центр Венеры и точку (0°, 0°).

Рисунок 4.17. Зависимость углов Земля – СА – Венера (град) и Солнце – СА – Венера (град) от долготы точки посадки (град) для окна стартов 2024 г. Угол Земля – СА – Венера – сплошная линия; угол Солнце – СА – Венера – пунктирная линия.

4.3.6. Окно стартов 2026 г.

Таблица 4.14 – Район баллистической достижимости для окна стартов 2026 г.

					Угол	Угол
Наклонация	٤	n	широта	полгота	Земля –	Солнце –
паклонение,	יכ דו וס ורא	Ц, ТНО КМ	пирота,	долгота,	– CA –	– CA –
трад	тыс.км	I BIC.KM	трад	трад	– Венера,	– Венера,
					град	град
4.247	-0.016	20.495	-19.523	140.996	125.754	53.329
4.247	-0.032	20.495	-19.482	140.988	125.771	53.325
4.248	-0.049	20.495	-19.441	140.978	125.790	53.322
4.249	-0.065	20.495	-19.399	140.970	125.808	53.318
4.251	-0.081	20.494	-19.357	140.962	125.825	53.313
4.253	-0.097	20.494	-19.316	140.952	125.844	53.311
4.256	-0.114	20.494	-19.274	140.944	125.862	53.306
4.259	-0.130	20.494	-19.232	140.934	125.881	53.304
4.263	-0.147	20.494	-19.190	140.926	125.898	53.299

					Угол	Угол
Цаклоношио	u	n	HUHDOTO	TOTEOTO	Земля –	Солнце –
паклонение,	S,	Ц, тыс км	широта,	долгота,	– CA –	– CA –
трад	I BIC.KM	тыс.км	трад	трад	– Венера,	– Венера,
					град	град
4.267	-0.163	20.494	-19.147	140.918	125.916	53.295
4.272	-0.180	20.494	-19.105	140.908	125.935	53.292
4.277	-0.197	20.494	-19.061	140.899	125.953	53.288
4.283	-0.214	20.494	-19.018	140.891	125.971	53.283
4.289	-0.231	20.493	-18.975	140.881	125.990	53.281
4.296	-0.248	20.493	-18.930	140.873	126.008	53.276
4.304	-0.266	20.493	-18.886	140.863	126.028	53.273
4.312	-0.283	20.493	-18.841	140.854	126.047	53.269
4.321	-0.301	20.492	-18.796	140.844	126.067	53.266
4.330	-0.319	20.492	-18.750	140.835	126.085	53.261
4.341	-0.337	20.492	-18.703	140.826	126.104	53.257
4.352	-0.356	20.492	-18.656	140.816	126.125	53.254
4.363	-0.374	20.491	-18.608	140.807	126.144	53.249
4.376	-0.393	20.491	-18.560	140.796	126.166	53.246
4.389	-0.413	20.491	-18.511	140.787	126.185	53.241
4.403	-0.432	20.490	-18.461	140.776	126.207	53.238
4.418	-0.452	20.490	-18.410	140.767	126.227	53.233
4.434	-0.472	20.489	-18.358	140.755	126.250	53.230
4.451	-0.493	20.489	-18.306	140.746	126.271	53.225
4.468	-0.514	20.488	-18.252	140.736	126.292	53.219
4.487	-0.535	20.488	-18.198	140.724	126.315	53.216
4.507	-0.557	20.487	-18.142	140.714	126.337	53.210
4.528	-0.579	20.486	-18.085	140.702	126.361	53.207
4.551	-0.602	20.486	-18.027	140.690	126.386	53.203
4.575	-0.625	20.485	-17.967	140.679	126.409	53.197
4.600	-0.649	20.484	-17.907	140.666	126.435	53.193
4.626	-0.673	20.484	-17.844	140.655	127.498	54.646
4.654	-0.698	20.483	-17.780	140.642	127.525	54.642
4.684	-0.724	20.482	-17.714	140.630	127.551	54.637
4.716	-0.750	20.481	-17.647	140.617	127.579	54.634
4.749	-0.777	20.480	-17.577	140.602	127.609	54.630
4.785	-0.805	20.479	-17.506	140.590	127.637	54.625
4.822	-0.834	20.478	-17.432	140.575	127.667	54.621
4.862	-0.864	20.476	-17.356	140.560	127.699	54.617
4.904	-0.894	20.475	-17.277	140.547	127.729	54.611
4.949	-0.926	20.474	-17.196	140.531	127.762	54.607
4.997	-0.959	20.472	-17.112	140.514	127.796	54.602
5.048	-0.993	20.471	-17.024	140.498	127.832	54.597
5.102	-1.028	20.469	-16.934	140.482	127.866	54.591
5.160	-1.065	20.467	-16.839	140.465	127.904	54.586
5.221	-1.103	20.465	-16.741	140.446	127.943	54.580
5.287	-1.143	20.463	-16.639	140.427	127.983	54.575
5.357	-1.185	20.460	-16.532	140.408	128.025	54.569
5.432	-1.228	20.458	-16.421	140.387	128.068	54.563

					Угол	Угол
Hannanan	لا	~			Земля –	Солнце –
паклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	ТЫС.КМ	ТЫС.КМ	град	град	– Венера,	– Венера,
					град	град
5.512	-1.273	20.455	-16.304	140.366	128.113	54.557
5.598	-1.321	20.452	-16.181	140.345	128.160	54.550
5.690	-1.371	20.449	-16.052	140.322	128.209	54.543
5.790	-1.424	20.445	-15.917	140.298	128.259	54.536
5.897	-1.480	20.441	-15.774	140.272	128.315	54.530
6.012	-1.538	20.437	-15.622	140.246	128.370	54.522
6.137	-1.601	20.432	-15.462	140.219	128.429	54.513
6.272	-1.667	20.427	-15.291	140.189	128.492	54.506
6.418	-1.737	20.421	-15.110	140.159	128.557	54.497
6.577	-1.812	20.414	-14.916	140.126	128.627	54.488
6.751	-1.893	20.407	-14.709	140.091	128.701	54.480
6.941	-1.979	20.399	-14.486	140.054	128.779	54.470
7.148	-2.071	20.390	-14.247	140.016	128.862	54.460
7.376	-2.172	20.379	-13.987	139.975	128.950	54.449
7.628	-2.280	20.367	-13.706	139.931	129.044	54.438
7.906	-2.398	20.354	-13.400	139.883	129.146	54.427
8.215	-2.528	20.338	-13.064	139.833	129.253	54.414
8.559	-2.669	20.320	-12.696	139.778	129.369	54.402
8.945	-2.826	20.299	-12.289	139.718	129.496	54.391
9.379	-3.000	20.274	-11.836	139.655	129.630	54.377
9.871	-3.193	20.244	-11.329	139.585	129.776	54.364
10.431	-3.411	20.209	-10.758	139.508	129.936	54.352
11.075	-3.658	20.166	-10.110	139.424	130.107	54.339
11.819	-3.940	20.112	-9.367	139.334	130.292	54.327
12.689	-4.266	20.046	-8.508	139.233	130.493	54.319
13.717	-4.645	19.961	-7.501	139.123	130.707	54.313
14.946	-5.093	19.852	-6.306	139.001	130.933	54.315
16.438	-5.628	19.707	-4.865	138.871	131.161	54.326
18.281	-6.279	19.509	-3.096	138.730	131.379	54.356
20.605	-7.085	19.231	-0.877	138.584	131.553	54.418
23.607	-8.102	18.825	1.978	138.448	131.609	54.533
27.603	-9.412	18.205	5.763	138.353	131.399	54.751
33.102	-11.131	17.208	10.954	138.385	130.585	55.159
40.946	-13.391	15.515	18.328	138.765	128.442	55.947
52.426	-16.223	12.524	29.033	140.152	123.500	57.473
68.944	-19.120	7.379	44.086	144.683	113.575	60.289
90.000	-20,495	0.000	61.564	160.115	97.932	64.602
111.057	-19.120	-7.378	71.064	204.767	80.463	69.326
127.576	-16.223	-12.524	65.477	244.583	66.077	73.066
139.057	-13.391	-15.515	57.158	258.841	55.873	75.562
146.901	-11.131	-17.208	50.625	264.535	48.734	78,144
152.402	-9.412	-18.205	45.816	267.342	43.818	79.328
156.399	-8.102	-18.825	42.234	268.939	40.233	80.143
159.402	-7.085	-19.231	39.498	269.944	37.530	80.732
-		-	-		-	1

					Угол	Угол
Hannanana	٤	~			Земля –	Солнце –
паклонение,	ς,	Ц, тыр. кал	широта,	долгота,	– CA –	– CA –
трад	ТЫС.КМ	ТЫС.КМ	трад	трад	– Венера,	– Венера,
					град	град
161.727	-6.279	-19.509	37.353	270.621	35.430	81.169
163.570	-5.628	-19.707	35.634	271.105	33.756	81.507
165.063	-5.092	-19.852	34.227	271.465	32.395	81.774
166.293	-4.645	-19.961	33.056	271.742	31.266	81.990
167.322	-4.266	-20.046	32.067	271.961	30.315	82.168
168.193	-3.940	-20.112	31.220	272.135	29.504	82.315
168.938	-3.658	-20.165	30.487	272.280	28.804	82.441
169.583	-3.411	-20.209	29.846	272.402	28.194	82.550
170.144	-3.193	-20.244	29.281	272.504	27.657	82.644
170.637	-2.999	-20.274	28.779	272.592	27.181	82.726
171.072	-2.826	-20.299	28.330	272.667	26.755	82.798
171.458	-2.669	-20.320	27.925	272.734	26.373	82.862
171.803	-2.528	-20.338	27.559	272.793	26.027	82.921
172.113	-2.398	-20.354	27.225	272.845	25.713	82.973
172.392	-2.280	-20.367	26.920	272.891	25.425	83.020
172.644	-2.172	-20.379	26.640	272.934	25.162	83.063
172.873	-2.071	-20.390	26.382	272.972	24.919	83.103
173.081	-1.979	-20.399	26.142	273.006	24.695	83.139
173.271	-1.893	-20.407	25.920	273.037	24.486	83.171
173.445	-1.812	-20.414	25.713	273.066	24.293	83.203
173.605	-1.737	-20.421	25.520	273.093	24.112	83.232
173.752	-1.667	-20.427	25.338	273.116	23.942	83.257
173.888	-1.601	-20.432	25.168	273.139	23.783	83.282
174.013	-1.538	-20.437	25.007	273.160	23.633	83.306
174.129	-1.480	-20.441	24.856	273.181	23.493	83.329
174.236	-1.424	-20.445	24.713	273.199	23.359	83.349
174.336	-1.371	-20.449	24.577	273.216	23.232	83.368
174.429	-1.321	-20.452	24.448	273.233	23.113	83.387
174.515	-1.273	-20.455	24.325	273.247	22.998	83.404
174.596	-1.228	-20.458	24.208	273.262	22.890	83.421
174.671	-1.185	-20.460	24.096	273.277	22.786	83.437
174.742	-1.143	-20.463	23.989	273.288	22.686	83.451
174.808	-1.103	-20.465	23.886	273.301	22.591	83.466
174.869	-1.065	-20.467	23.788	273.313	22.500	83.480
174.927	-1.028	-20.469	23.693	273.325	22.413	83.493
174.982	-0.993	-20.471	23.602	273.335	22.328	83.506
175.033	-0.959	-20.472	23.515	273.346	22.247	83.518
175.081	-0.926	-20.474	23.430	273.355	22.169	83.530
175.126	-0.894	-20.475	23.348	273.365	22.094	83.541
175.169	-0.864	-20.476	23.270	273.374	22.021	83.552
175.209	-0.834	-20.478	23.193	273.382	21.950	83.562
175.247	-0.805	-20.479	23.119	273.390	21.881	83.572
175.282	-0.777	$-20.4\overline{80}$	23.047	273.398	21.815	83.581
175.316	-0.750	-20.481	22.977	273.405	21.750	83.590

					Угол	Угол
Havenavarra	٤				Земля –	Солнце –
наклонение,	ς,	η,	широта,	долгота,	– CA –	– CA –
град	ТЫС.КМ	тыс.км	град	град	– Венера,	– Венера,
					град	град
175.348	-0.724	-20.482	22.909	273.412	21.688	83.599
175.378	-0.698	-20.483	22.843	273.421	21.627	83.610
175.406	-0.673	-20.484	22.779	273.428	21.568	83.618
175.433	-0.649	-20.484	22.716	273.434	21.510	83.626
175.458	-0.625	-20.485	22.655	273.440	21.453	83.633
175.482	-0.602	-20.486	22.595	273.448	21.399	83.643
175.504	-0.579	-20.486	22.536	273.454	21.345	83.650
175.526	-0.557	-20.487	22.479	273.459	21.292	83.657
175.546	-0.535	-20.488	22.423	273.466	21.241	83.666
175.565	-0.514	-20.488	22.368	273.471	21.190	83.672
175.583	-0.493	-20.489	22.314	273.476	21.140	83.679
175.600	-0.472	-20.489	22.261	273.483	21.092	83.687
175.616	-0.452	-20.490	22.209	273.488	21.044	83.693
175.631	-0.432	-20.490	22.158	273.494	20.998	83.701
175.645	-0.413	-20.490	22.108	273.499	20.951	83.707
175.658	-0.393	-20.491	22.058	273.503	20.905	83.712
175.671	-0.374	-20.491	22.010	273.509	20.861	83.720
175.683	-0.356	-20.492	21.961	273.513	20.817	83.725
175.694	-0.337	-20.492	21.914	273.519	20.774	83.733
175.704	-0.319	-20.492	21.867	273.523	20.730	83.738
175.714	-0.301	-20.492	21.821	273.529	20.688	83.745
175.723	-0.283	-20.493	21.775	273.532	20.646	83.750
175.731	-0.266	-20.493	21.730	273.538	20.605	83.757
175.738	-0.248	-20.493	21.685	273.541	20.564	83.762
175.746	-0.231	-20.493	21.641	273.547	20.523	83.768
175.752	-0.214	-20.494	21.596	273.550	20.483	83.773
175.758	-0.197	-20.494	21.553	273.553	20.442	83.778
175.763	-0.180	-20.494	21.509	273.559	20.403	83.784
175.768	-0.163	-20.494	21.466	273.562	20.363	83.789
175.772	-0.147	-20.494	21.423	273.567	20.325	83.795
175.776	-0.130	-20.494	21.381	273.570	20.285	83.800
175.779	-0.114	-20.494	21.338	273.575	20.247	83.806
175.782	-0.097	-20.494	21.296	273.578	20.208	83.811
175.784	-0.081	-20.494	21.254	273.583	20.170	83.817
175.786	-0.065	-20.495	21.212	273.586	20.132	83.821
175.787	-0.049	-20.495	21.170	273.591	20.094	83.827
175.788	-0.032	-20.495	21.129	273.596	20.056	83.834
175.788	-0.016	-20.495	21.087	273.599	20.018	83.838
175.788	0.000	-20.495	21.045	273.604	19.980	83.844

Рисунок 4.18. Зависимость широты и долготы точки посадки (град) для окна стартов 2026 г.

Рисунок 4.19. Зависимость широты и долготы точки посадки (град) для окна стартов 2026 г. – толстая линия. Стрелка показывает ось вращения Венеры (остриё стрелки направлено на Север), показаны также экватор и меридианы для 0° и 180°. Отрезок соединяет центр Венеры и точку (0°, 0°).

Рисунок 4.20. Зависимость углов Земля – СА – Венера (град) и Солнце – СА – Венера (град) от долготы точки посадки (град) для окна стартов 2026 г. Угол Земля – СА – Венера – сплошная линия; угол Солнце – СА – Венера – пунктирная линия.

5. РАЗРАБОТКА СХЕМ ВЫВЕДЕНИЯ НА ОРБИТЫ ИСКУССТВЕННЫХ СПУТНИКОВ ВЕНЕРЫ ОРБИТАЛЬНОГО КА И СУБСПУТНИКА ДЛЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ ЭКСПЕРИМЕНТОВ КОМПЛЕКСА "ВЕНЕРА-Д"

5.1. Геометрия орбит ИСВ основного КА и субспутника.

Проектом «Венера-Д» предусмотрено, что на орбитах искусственного спутника Венеры должны находиться сразу два аппарата: основной КА и субспутник. Это необходимо для проведения измерений параметров, характеризующих состояние ионосферы, экзосферы и магнитосферы Венеры. Эти измерения можно проводить при их одновременной регистрация на борту основного КА и субспутника. Сами аппараты должны быть специальным образом расположены друг относительно друга. Например, для изучения ионосферы отрезок, соединяющий основной КА и субспутник, должен проходить через ионосферу в момент проведения измерений. Если основной КА и субспутник будут иметь разные периоды, можно подобрать интервалы времени, в которых будут выполняться заданные условия по относительному положению основного КА и субспутника. При одинаковых периодах орбит другие параметры должны обеспечить возможность проведения измерений. Периоды должны быть кратны земным суткам, чтобы обеспечить цикличность при управлении полётом.

Возможные варианты периодов орбит основного КА и субспутника приведены в таблице 5.1.

-		1
№ варианта	Период орбиты субспутника, час	Период орбиты основного КА, час
1	48	24
2	24	48
3	24	24
4	12	12

Таблица 5.1. Варианты периодов орбит основного КА и субспутника.

В первом варианте возникнут сложности с обеспечением связи со спускаемым аппаратом. Второй вариант потребует дополнительных энергозатрат на перевод основного КА на орбиту с бо́льшим периодом. Третий и четвёртый вариант предпочтительны с точки зрения энергозатрат, но возникнут дополнительные трудности с обеспечением различного расположения орбит.

Детально рассмотрим первый вариант, в котором предлагается вывести субспутник на орбиту с периодом равным двум земным суткам, а основной КА – на орбиту с периодом, равным земным суткам. Основной КА после манёвра торможения переходит на орбиту с периодом двое суток. В её апоцентре должен быть отделён субспутник. После этого основной КА переходит на орбиту с периодом, равным земным суткам.

Для такой схемы модуль импульса перехода на орбиту ИСВ составит 648 м/с. Элементы орбиты основного КА после его выхода на орбиту ИСВ приведены в табл. 5.2.

Элемент орбиты	Значение
Полуось, тыс. км	62.633609
Эксцентриситет	0.899
Наклонение, град	90.0
Долгота восходящего узла, град	240.2
Аргумент перицентра, град	334.4
Среднее движение (<i>n</i>) рад/тыс. сек	0.03636
Период, час	48.0
Расстояние в перицентре, тыс. км	6.301876
Высота в перицентре, км	249.983
Расстояние в апоцентре, тыс. км	118.965344
Высота в апоцентре, км	112913.450640
Широта подспутниковой точки, град	-25.578
Долгота подспутниковой точки, град	240.258

Таблица 5.2. Элементы орбиты основного КА после его выхода на орбиту ИСВ.

Импульс перехода с орбиты с периодом, равным двум суткам, на орбиту с периодом одни сутки составляет 158 м/с.

Далее рассмотрены вопросы определения параметров движения, результаты расчётов зон видимости для орбиты с периодами двое и одни сутки. Представлены предложения по программе траекторных измерений на орбите ИСВ и результаты расчёта оценок точности определения и прогнозирования параметров движения на этих орбитах.

5.2. Определение параметров движения КА на орбите искусственного спутника Венеры

Источниками ошибок определения параметров движения КА являются:

- ошибки измерений;
- ошибки прогнозирования движения;

- ошибки вычисления расчётных аналогов измерений.

На орбите искусственного спутника Венеры одной из основных проблем, возникающих при определении параметров движения КА, является большая удалённость аппарата от наблюдательного пункта и, как следствие, медленное смещение линии визирования. На рисунке 5.1 изображена эксцентрическая орбита искусственного спутника Венеры, направление с наземного измерительного пункта на центр масс планеты и линия, вдоль которой проводятся измерения дальности и радиальной скорости КА. Очевидно, что поворот плоскости орбиты вокруг линии Измерительный пункт–Центр масс Венеры не приводит к изменению дальности и радиальной скорости КА относительно измерительного пункта.

Рис. 5.1. Эксцентрическая орбита искусственного спутника Венеры.

Из этого следует, что измерения, проводящиеся на орбите ИСВ, обеспечивают определение всех орбитальных параметров только в случае значительного изменения направления линии Земля–Венера. Как показывает опыт, накопленный в ходе БНО полёта КА «Венера-15» и «Венера-16», для того чтобы выполнить это требование, интервал обработки измерений должен иметь протяженность от 7 до 15 суток. Модель движения КА на этом интервале должна достаточно точно соответствовать реальному движению. Остроту проблемы можно значительно снизить, если на траектории ИСВ использовать для определения орбитальных параметров наряду с измерениями радиальной скорости и дальности радиоинтерферометрические измерения на сверхдлинной базе (РСДБ). Однако проведение таких измерений требует больших трудозатрат, поэтому мы остановимся на изучении возможности построения адекватной модели движения КА.

Ниже перечислены наиболее значительные источники ошибок модели движения КА на орбите ИСВ:

- недостаточная точность учёта влияния нецентрального гравитационного поля Венеры;
- наличие неучтённых микроускорений в движении КА, вызванных работой двигателей системы ориентации и других систем аппарата;
- неточность учёта влияния давления солнечного излучения.

В настоящее время гравитационное поле Венеры достаточно хорошо изучено. Модель гравитационного поля Венеры, разработанная специалистами Лаборатории реактивного движения США под руководством Шогрена и Раппапорта в 1997 году, считается одной из наиболее точных. Модель идентифицирована аббревиатурой RS-SHTJV360.A02 и содержит разложения потенциала гравитационного поля Венеры по сферическим функциям до гармоники 360×360. Использовать такой объём данных (более 100 тысяч коэффициентов) в ходе оперативных работ не представляется возможным. Для решения задач навигации КА «Венера-Д» можно, по-видимому, ограничиться срезом 36×36. Для проектных расчётов достаточное представление об эволюции дает поле 4×4, коэффициенты которого приводятся ниже (табл. 5.3). Радиус Венеры 6051.880596 км. Гравитационный параметр 324858.591559 км³/с².

п	т	C _{nm}	d_{nm}
2	0	26938E-04	.00000E+00
2	1	.15447E–04	79224E-05
2	2	22297E-04	.37788E-06
3	0	.30154E–04	.00000E+00
3	1	.48880E-04	80741E-05
3	2	.51822E-05	.24327E-04
3	3	53683E-05	43631E-05
4	0	.27921E-04	.00000E+00
4	1	.66142E–05	.14978E–04
4	2	.16065E–04	.92011E-05
4	3	45104E-05	35665E-05
4	4	.84460E–05	.29252E-04

Таблица 5.3. Коэффициенты гравитационного поля Венеры.

В ходе полёта ориентация аппарата строится и поддерживается либо непосредственно реактивными двигателями системы ориентации, либо системой маховиков (электромаховичных исполнительных органов – ЭМИО). В последнем случае накопление кинетического момента, вызванного давлением солнечного излучения или гравитационными силами, вызывает необходимость разгрузки ЭМИО – уменьшения угловой скорости вращения путём включения двигателей системы ориентации. Отсутствие моментной схемы ориентации приводит к возмущению движения центра масс КА. В случае отсутствия на аппарате ЭМИО эти возмущения становятся больше и возникают значительно чаще.

Из сказанного следует, что модель движения должна учитывать возмущения, возникающие вследствие работы двигателей системы ориентации в сеансах разгрузки ЭМИО. Продолжительность сеанса разгрузки невелика (предположительно менее 5 минут), поэтому возмущающие воздействия на движение центра масс аппарата могут рассматриваться как мгновенные импульсы изменения скорости, приложенные к середине интервала времени проведения сеанса. Параметры этих импульсов необходимо возможно более точно оценивать с использованием всей доступной информации. Такой информацией могут служить:

- внешнетраекторные радиотехнические измерения дальности и радиальной скорости;
- оценки величины и направления импульсов, полученные в результате обработки телеметрической информации.

В настоящее время эфемериды Земли и Венеры известны с высокой точностью. Ошибки гелиоцентрического положения центров масс Земли и Венеры, полученные на основе наиболее точных теорий движения, разработанных в Лаборатории реактивного движения США (напр. DE427), не превышают 1-2 км. Ошибки определения гелиоцентрического вектора скорости не превышают сотых долей мм/сек. Из-за большой удалённости возмущающих тел (Солнца и планет) эти ошибки практически не влияют на расчёт ареоцентрического движения КА. Тем не менее, неточность знания эфемерид Венеры и Земли, может оказаться одним из источников ошибок при определении параметров движения КА относительно Венеры по следующим причинам.

В момент проведения измерения *t*, соответствующего времени приема сигнала на Земле, расчётное значение измерения дальности вычисляется по формуле:

$$D = \frac{1}{2} \left[\left| \stackrel{\mathbf{r}}{r} \left(t_1 \right) - \stackrel{\mathbf{r}}{r}_{\text{prm}} \left(t \right) \right| + \left| \stackrel{\mathbf{r}}{r} \left(t_1 \right) - \stackrel{\mathbf{r}}{r}_{\text{prd}} \left(t_2 \right) \right| \right].$$

120

Расчётное значение измерения радиальной скорости вычисляется по формуле:

$$\mathcal{B} = \frac{1}{2} \left\{ \frac{\left(\begin{bmatrix} \mathbf{r} (t_1) - \mathbf{r}_{prm} (t) \end{bmatrix}, \begin{bmatrix} \mathbf{r} (t_1) - \mathbf{v}_{prm} (t) \end{bmatrix} \right)}{\left| \mathbf{r} (t_1) - \mathbf{r}_{prm} (t) \right|} + \frac{\left(\begin{bmatrix} \mathbf{r} (t_1) - \mathbf{r}_{prd} (t_2) \end{bmatrix}, \begin{bmatrix} \mathbf{r} (t_1) - \mathbf{r}_{prd} (t_2) \end{bmatrix} \right)}{\left| \mathbf{r} (t_1) - \mathbf{r}_{prd} (t_2) \right|} \right\},$$

где

$$t$$
 – время приёма сигнала на приёмной антенне на Земле;
 t_1 – время излучения сигнала на КА;
 t_2 – время излучения сигнала с передающей антенны на
Земле;
 $r(t_1)$ – геоцентрические координаты КА в момент времени t_1 ;
 $r_{prm}(t)$ – геоцентрические координаты приёмной антенны в
момент времени t ;
 $r_{prd}(t_2)$ – геоцентрические координаты передающей антенны в
момент времени t_2 ;
 $r_v(t)$ – геоцентрический вектор скорости КА в момент времени
 t ;
 $r_{prm}(t)$ – геоцентрический вектор скорости приёмной антенны в
момент времени t_2 .

Геоцентрический вектор состояния КА выражается через его венероцентрический вектор состояния $X \{ {r,v} \}$ формулой:

$$\begin{split} \mathbf{r}_{\text{Earth}}^{\mathbf{r}_{\text{sc}}} &= \mathbf{r}^{\mathbf{r}} + \mathbf{r}_{\text{Venus}}^{\mathbf{r}} - \mathbf{r}_{\text{Earth}}^{\mathbf{r}} , \\ \mathbf{r}_{\text{Earth}}^{\text{sc}} &= \mathbf{r} + \mathbf{r}_{\text{Venus}}^{\mathbf{r}} - \mathbf{r}_{\text{Earth}}^{\mathbf{r}} , \end{split}$$

где

 ${}^{1}_{r_{Venus}}$ –
 гелиоцентрическое положение Венеры;

 ${}^{1}_{r_{Earth}}$ –
 гелиоцентрическое положение Земли;

 ${}^{1}_{v_{Venus}}$ –
 гелиоцентрический вектор скорости Венеры;

Таким образом, положение $r_{Venus}^{1} - r_{Earth}^{1}$ и вектор скорости $v_{Venus}^{1} - v_{Earth}^{1}$ Венеры относительно Земли непосредственно используются при вычислениях и их ошибки искажают расчётные значения измерений дальности D и радиальной скорости D° . Для измерений радиальной скорости это искажение складывается из двух источников – ошибки вычисления скорости Венеры относительно Земли и ошибки вычисления единичного вектора Земля-Венера. Оба эти фактора малы по сравнению с ошибками измерений радиальной скорости, которые даже при самых благоприятных условиях превышают 0.1 мм/сек.

Для измерений дальности ошибки относительного положения Земли и Венеры на два порядка превышают ошибки измеренных значений, составляющих 20 м. Это делает невозможным использование измерений дальности на участке искусственного спутника Венеры.

Изложенные обстоятельства давно известны и учитываются при БНО полётов искусственных спутников Луны, Венеры и Марса: как правило, для определения орбитального движения этих КА используются только измерения радиальной скорости, а измерения дальности отбрасываются. Следует отметить, что измерения дальности имеют значительно более высокую информационную ценность, чем измерения радиальной скорости. Поэтому в мировой практике они широко используются для определения орбитальных параметров планет по данным траекторных измерений искусственных спутников.

Учитывая сказанное, для проекта «Венера-Д» целесообразно разработать задачу одновременного уточнения параметров венероцентрического движения КА и гелиоцентрического движения Земли и Венеры. Включение в число уточняемых параметров шести дополнительных параметров, определяющих гелиоцентрическое движение Земли, и шести параметров, определяющих гелиоцентрическое движение Венеры, приводит к необходимости привлечения радиолокационных измерений Венеры с наземных антенн в период пребывания КА на орбите ИСВ.

Выводы

1. Разработаны варианты схем, обеспечивающих доставку спускаемого аппарата в заданную область над поверхностью Венеры, а также выведение на орбиты искусственных спутников Венеры орбитального КА и субспутника для

122

выполнения программы экспериментов комплекса «Венера-Д». Проект «Венера-Д» предполагает доставку к Венере орбитального космического аппарата (КА), спускаемого аппарата (СА) и субспутника. Проведён расчёт окон стартов в период с 2018 г. по 2026 г. Определены энергетические характеристики перелётов, выбраны оптимальные даты старта. Определено, что наилучшим с энергетической точки зрения является окно 2024 г.

2. Прицельные параметры приведения КА к Венере должны обеспечить вход СА в атмосферу Венеры с заданным углом. Одновременно должны быть обеспечены условия освещённости и условия радиовидимости с наземных станций слежения. Для оптимальных условий старта вычислены области достижимости спускаемого аппарата на поверхности Венеры в зависимости от наклонения орбиты КА. Для точек области достижимости вычислены значения углов Земля – СА – Венера и Солнце – СА – Венера.

3. Рассмотрены различные варианты отделения субспутника от основного КА. Эти варианты различаются периодами орбит. Изучен вопрос определения параметров движения КА на орбите искусственного спутника Венеры.

6. УТОЧНЕНИЕ ТРЕБОВАНИЙ К ЭНЕРГЕТИЧЕСКОМУ ПОТЕНЦИАЛУ РАДИОЛИНИЙ ОА—СС И ОА—ЗЕМЛЯ ДЛЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ ДВУХЧАСТОТНОГО РАДИОПРОСВЕЧИВАНИЯ ИОНОСФЕРЫ И АТМОСФЕРЫ ВЕНЕРЫ ПРИ ВЫПОЛНЕНИИ НАУЧНОЙ ПРОГРАММЫ ПРОЕКТА "ВЕНЕРА-Д"

Проект ВЕНЕРА-Д продолжит исследования газовой оболочки Венеры методом радиозатмений с использованием орбитального аппарата (ОА) и субспутника (СС), оснащённых современной научной аппаратурой. В отчете (Гаврик А.Л., 2009) были проработаны методы исследования ионосферы и атмосферы Венеры с помощью двухчастотного радиопросвечивания на трассе связи ОА—Земля, а также метод бистатической радиолокации ее поверхности. В отчете (Засова Л.В., 2010) предложены и проработаны методы исследования поверхности, ионосферы и атмосферы Венеры с помощью двухчастотного зондирования на трассе связи Земля—ОА. В отчете (Гаврик А.Л., 2011а) проработаны требования к радиолинии ОА—СС для проведения экспериментов двухчастотного радиопросвечивания к ионосферы и атмосферы.

Цель данной работы – уточнение требований к энергетическому потенциалу радиолиний ОА—СС и ОА—Земля для проведения экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы Венеры при выполнении научной программы проекта ВЕНЕРА-Д.

Исследования атмосфер и ионосфер планет методом радиозатмений начались в 1965 г. во время полета космического аппарата (KA) MARINER-4 к Марсу. В настоящее время радиозатмения на трассе ОА→Земля осуществляются в большинстве космических миссий.

Радиопросвечивания на трассе спутник→спутник начались в 1975 г. в эксперименте APOLLO/SOYUZ-ATS-F. В настоящее время ежедневно проводятся сотни радиопросвечиваний околоземной оболочки, общее количество радиопросвечиваний превысило 10⁶ (Яковлев О.И. и др., 2010). При исследовании планет Солнечной системы аналогичные эксперименты до настоящего времени не проводились, пилотный эксперимент планировалось осуществить в проекте ФОБОС-ГРУНТ (Sun Y.Q. et al, 2010), но проект не реализован из-за неудачного старта КА.

Радиопросвечивание газовой оболочки планеты возможно в тех случаях, когда излучающий сигналы ОА заходит за диск планеты или выходит из-за него при наблюдении с Земли или с борта СС. Во время радиозатмения приемная аппаратура

регистрирует трансформированные газовой оболочкой сигналы, излучаемые с борта ОА, и после эксперимента полученная информация передается по штатным каналам связи потребителям для дальнейшей обработки. Метод радиозатмений использует связь вызываемых средой изменений частоты и интенсивности радиоволн с ее профилем показателя преломления для определения параметров зондируемой среды. Метод дисперсионного интерферометра, основанный на различии фазовых скоростей распространения радиоволн разных диапазонов в диспергирующей среде, выделяет вариации фазы сигнала, обусловленные только влиянием плазмы, что увеличивает точность определения вертикального профиля концентрации электронов N(h) при решении обратной задачи радиопросвечивания.

В традиционных экспериментах радиопросвечивания на трассе OA→Земля на радиосигналы оказывают влияние межпланетная плазма и ионосфера Земли. Нестационарные процессы в плазме на трассе связи являются главным мешающим фактором. Флуктуации фазы сигнала, обусловленные влиянием среды за пределами зондируемой ионосферы планеты, увеличивают погрешность определения профиля N(h), что приводит к искажению сведений о тонкой структуре зондируемой ионосферы.

В радиозатменных экспериментах на трассе $OA \rightarrow CC$ зондирующие ионосферу радиосигналы не искажаются флуктуациями плотности плазмы на трассе связи за пределами зондируемой ионосферы, т.к. длина трассы связи не превышает 100 тыс.км. Благодаря этому появляется уникальная возможность изучения многослойных структур в нижней области дневной ионосферы, а также слабоионизованной ионосферы в области глубокой тени по результатам зондирования на трассе $OA \rightarrow CC$. Представляется целесообразным осуществить в проекте ВЕНЕРА-Д достаточно большую серию экспериментов двухчастотного радиопросвечивания на трассе $OA \rightarrow CC$. Актуальность и техническая возможность подготовки такого эксперимента подтверждается высокой эффективностью аналогичных исследований околоземной оболочки и проработкой аналогичного эксперимента в проекте ФОБОС-ГРУНТ (Sun Y.Q. et al, 2010).

Длительное функционирование ОА и СС на орбите Венеры в проекте ВЕНЕРА-Д обеспечит возможность регулярного проведения уникальных экспериментов радиопросвечивания на трассах связи ОА—СС и ОА—Земля, что принесет принципиально новую информацию о газовой оболочке Венеры.

Ведущими специалистами ИРЭ им. В.А. Котельникова РАН накоплен большой опыт проведения экспериментов и анализа данных радиозондирования межпланетной плазмы (к.т.н. Ефимов А.И.), атмосферы (проф. Яковлев О.И, к.т.н. Матюгов С.С.), ионосферы (д.ф.-м.н. Савич Н.А.) и бистатической радиолокации поверхности планеты (к.т.н. Павельев А.Г.), обобщение этого опыта будет методической основой новых радиозатменных экспериментов.

6.1. Уточнение постановки научных задач экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы Венеры для выполнения научной программы проекта "Венера-Д"

Цель предлагаемых экспериментов – радиопросвечивание атмосферы и ионосферы Венеры на трассах радиосвязи ОА→СС и ОА→Земля.

6.1.1 Метод двухчастотного радиопросвечивания

Теория радиопросвечивания, использующая приближения геометрической оптики, известна и неоднократно применялась при обработке данных радиозатменных экспериментов с целью получения высотных распределений *N*(*h*) электронной концентрации и высотных профилей плотности, температуры, давления атмосферы. Схема радиозатменного эксперимента показана на рис. 6.1. Анализ условий экспериментов и полученные результаты указывают на возможность единого подхода к диагностике слоистых структур ионосферы и верхней атмосферы планеты по данным просвечивания на трассах связи ОА→СС и ОА→Земля.

Рис. 6.1. Схема радиозатменного эксперимента.

Движущийся по орбите объект *А* принимает когерентные сигналы, излучаемые неподвижным объектом *B*, оба объекта находятся выше ионопаузы (изменение

направления излучения не изменяет используемые соотношения). Скорость погружения линии прямой видимости *AB* в оболочку планеты V=dh/dt > 1 км/с (h – высота над поверхностью планеты), а также расстояния *CA* и *CB* от перицентра линии *AB* до приемника L_1 и до излучателя L_2 не изменяются во времени. Асимптоты *AD* и *DB* искривленного рефракцией радиолуча имеют прицельный параметр p(t), величину которого вследствие малости угла рефракции $\xi(t)$ считаем равной планетоцентрическому расстоянию до точки поворота луча *OD*^{*}. Такие предположения не ухудшают точность результатов большинства экспериментов (Гаврик и др., 2009-2011, Засова и др., 2010, Яковлев и др, 1998, 2010, Савич Н.А. и др., 1986а,6,в,).

В экспериментах двухчастотного радиопросвечивания измеряются вариации фаз $\varphi(t)$ и интенсивностей $E_{\rm e}(t)$ когерентных зондирующих сигналов. Измерительное устройство определяет приращение фазы каждого сигнала за время τ , т.е. непосредственно измеряет частоты сигналов:

$$f(t) = (2\pi)^{-1} \cdot d\varphi(t)/dt = (2\pi)^{-1} \cdot [\varphi(t) - \varphi(t-\tau)] \cdot \tau^{-1}$$

Частоты сигналов связаны интегральными соотношениями с вертикальным профилем показателя преломления зондируемой среды n(h). Чтобы выделить вариации частоты, обусловленные только влиянием плазмы, из измеренных частот $f_D(t)$ и $f_C(t)$ дециметрового (ДМ) и сантиметрового (СМ) сигналов формируется разностная частота $\delta f(t)$ (в отечественных экспериментах радиопросвечивания Венеры и Марса излучались сигналы ДМ с частотой f_{dm} =938 МГц и СМ с частотой f_{cm} =4 f_{dm} [9-12]):

$$\delta f(t) = q^2 \cdot (q^2 - 1)^{-1} \cdot [f_D(t) - f_C(t) \cdot q^{-1}],$$
 где $q = f_{cm}/f_{dm}$.

Функция $\delta f(t)$ не содержит возмущений, величина которых прямо пропорциональна частоте излучения $f_{\rm dm}$, а именно, исключаются: влияние нейтральной атмосферы, нестабильность опорных осцилляторов и доплеровские смещения частот, обусловленные взаимным движением излучателя и приемника (Савич Н.А. и др., 1986а,б,в, Яковлев О.И., 1998). При распространении в ионосфере изменение частоты ДМ-сигнала $f_p(t)$ обратно пропорционально $f_{\rm dm}$, поэтому не исключается, но отличается от $\delta f(t)$, т.к. из-за рефракции радиолучи ДМ- и СМ-сигналов проходят по разным областям ионосферы. Разработан и апробирован (Гаврик и др, 2010а,б, 2011б, Савич Н.А. и др., 1986а) метод восстановления $f_p(t)$ по вариациям $\delta f(t)$, моделирование показало, что погрешность восстановления $f_p(t)$ не превышает 0.5% и сопоставима с инструментальным шумом экспериментов с КА ВЕНЕРА-15,-16 (Савич Н.А. и др., 1986а,б). Для определения изменения частоты ДМ-сигнала в атмосфере $f_a(t)$ из функции $f_D(t)$ вычитаются ионосферный эффект $f_p(t)$ и рассчитанное из траекторных данных изменение частоты, обусловленное взаимным движением передатчика и приемника.

По функции $f_a(t)$ определяются вертикальные профили плотности и температуры атмосферы, по функции $f_p(t)$ определяется профиль концентрации электронов в ионосфере, для этого используются известные методы решения соответствующих обратных задач (Савич Н.А. и др., 1986а, б, в, Яковлев О.И., 1998).

6.1.2. Получение данных об атмосфере Венеры

Вариации частоты $f_a(t)$ зондирующего сигнала, обусловленные влиянием атмосферы, связаны с углом рефракции $\xi(t)$ известными многопараметрическими соотношениями (Яковлев О.И., 1998). Известные методики (Яковлев О.И., 1998) позволяют решить обратную задачу радиопросвечивания и определить профиль n(h) по данным $f_a(t)$, используя преобразование Абеля. В атмосфере профиль n(h) зависит от состава газа, его плотности и температуры. На рис. 6.2 показан профиль температуры в атмосфере Венеры (Jenkins, J.M. et al, 1994). Ниже 75 км погрешность определения температуры, как правило, не превышает 1 градуса. В верхней атмосфере погрешности определения температуры резко увеличиваются от нескольких градусов на высоте 75 км до ста градусов на высоте 100 км (красные кривые), что не позволяет исследовать распространение возмущений из атмосферы в ионосферу по результатам решения обратной задачи радиопросвечивания.

Рис. 6.2. Распределение температуры атмосферы Венеры по данным КА MAGELLAN.

По вариациям температуры можно выявлять волновые процессы в атмосфере. На рис. 6.3 показаны периодические вариации температуры атмосферы, указывающие на волновую активность в атмосфере (Jenkins, J.M. et al, 1994). Однако на высотах h > 75 км достоверность сведений о волновых процессах требует дополнительного анализа из-за больших погрешностей определения температуры атмосферы путем решения обратной задачи радиопросвечивания.

Рис. 6.3. Вариации температуры в атмосфере Венеры по данным КА МАГЕЛЛАН (Jenkins, J.M. et al, 1994).

При радиозатменном зондировании глубоких слоев атмосферы (~40 км) рефракционное ослабление уровня сигнала составляет около 25 дБ, а интегральное поглощение радиоволн Х-диапазона может достигать 15 дБ. Поэтому при проведении измерений поглощения радиоволн в эксперименте ВЕНЕРА-Д мощность радиосигналов должна быть достаточной для того, чтобы обеспечить надежные измерения поглощения при изменении уровня сигнала на ~40 дБ. Поглощение радиоволн можно определять двумя способами (Kliore A.J. et al, 1979):

а) Сравнивая ослабление интенсивности сигналов разных диапазонов.

б) Сравнивая ослабление интенсивности сигнала с рассчитанным из частотных данных рефракционным ослаблением сигнала.

Результаты определения поглощения радиоволн по разности между ослаблениями интенсивности сигналов S и X диапазонов и рефракционными ослаблениями этих сигналов, рассчитанным из частотных данных, представлены на рис. 6.4(Kliore A.J. et al, 1979):.

Рис. 6.4. Сравнение ослабления интенсивности радиоволн с рефракционным ослаблением, вычисленным из частотных данных для сигналов 13 см и 3.6 см КА МАРИНЕР 10 (Kliore A.J. et al, 1979).

Именно такими методами были обнаружены пары серной кислоты в атмосфере Венеры, которые являются весьма сильным поглотителем радиоволн. По результатам радиозатменных экспериментов MARINER-10 (Kliore A.J. et al, 1979):, PIONEER-VENUS (Brace L.H. et al, 1991), BEHEPA-15,-16 (Яковлев О.И., 1998), MAGELLAN (Jenkins, J.M. et al, 1994) получены распределения концентрации паров H₂SO₄ в атмосфере Венеры, на рис 5 представлены примеры таких распределений.

Рис. 6.5. Распределение паров серной кислоты в атмосфере Венеры (Jenkins, J.M. et al,

1994).

Таким образом, известные радиофизические методики получения данных о профилях плотности, температуры и давления нейтральной атмосферы позволят получить закономерности вариаций параметров атмосферы Венеры в интервале высот от ~40 км до ~100 км как функции высоты, широты, местного времени и сезона. Современные технологии позволят по измерениям вариаций интенсивности и фазы двух когерентных сигналов изучить мелкомасштабную структуру атмосферы, условия формирования и характеристики тонких регулярных слоев, закономерности изменения концентрации паров серной кислоты, в результате будут получены новые сведения об атмосфере Венеры. Для решения таких задач энергетический потенциал радиолинии должен обеспечить возможность определения параметров сигналов, мощность которых уменьшилась на 40 дб.

6.1.3. Получение данных об ионосфере Венеры

Вариации частоты $f_p(t)$ зондирующего сигнала, обусловленные влиянием ионосферы, связаны с углом рефракции $\xi(t)$ известными многопараметрическими соотношениями (Яковлев О.И., 1998). Известные методики (Гаврик А.Л. и др., 2010а,б, Гаврик А.Л. и др., 20116, Савич Н.А. и др., 1986а,б) позволяют решить обратную задачу радиопросвечивания и определить профиль n(h) по данным $f_p(t)$, используя преобразование Абеля. В ионосфере показатель преломления $\ln(n(h))=0.5 \cdot N(h) \cdot \lambda^2 \cdot e^2 \cdot (\pi \cdot m \cdot c)^{-1}$ определяется распределением N(h)концентрации электронов, e, m – заряд и масса электрона, c – скорость света, λ – длина волны. Примеры профилей концентрации электронов в ионосфере Венеры представлены на рис. 6.6.

Рис. 6.6 Профили концентрации электронов в ионосфере Венеры.

Получение новых экспериментальных данных в эксперименте ВЕНЕРА-Д и применение известных методик определения профилей концентрации электронов в ионосфере позволят изучить закономерности вариаций параметров ионосферы Венеры в интервале высот от ~80 км до ~1000 км как функции высоты, широты, местного времени и сезона.

Методики определения параметров атмосферы и ионосферы различаются (Яковлев О.И., 1998), но принцип методов определения n(h) базируется на интегральных связях измеряемых параметров сигналов с характеристиками зондируемой среды. Погрешность определения n(h) обусловлена случайными флуктуациями функции $\xi(p)$, их влияние искажает сведения о малых вариациях n(h) в атмосфере и ионосфере (Гаврик А.Л. и др., 2010а,б, Гаврик А.Л. и др., 2010а,б, Гаврик А.Л. и др., 2010а,б, Гаврик А.Л. и др., 2011б). Из-за погрешностей возникают рассогласования профилей n(h), рассчитанных из функций $f_p(t)$, $X_p(t)$ для ионосферы и из функций $f_a(t)$, $X_a(t)$ для атмосферы. В работах (Гаврик А.Л. и др., 2010а,б, Гаврик А.Л. и др., 2011б) показано, что большая погрешность определения параметров атмосферы и ионосферы вблизи нижней границы ионосферы Венеры на высотах 75...115 км приводит к неоднозначности сведений о показателе преломления n(h) в этой области протяженностью ~40 км, что ограничивает возможность изучения волн плотности, распространяющихся в системе атмосфера.

6.1.4. Аналитическое обоснование метода диагностики слоистых структур

Вариации частоты $f_{ap}(t)=f_a(t)+f_p(t)$ и рефракционного ослабления $X_{ap}(t)=X_a(t)+X_p(t)$ зондирующего сигнала, обусловленные влиянием атмосферы и ионосферы (индексы а и p), связаны с углом рефракции $\xi(t)$ известными многопараметрическими соотношениями (Яковлев О.И., 1998). При анализе данных зондирования стратифицированной неплотной не поглощающей радиоволны газовой оболочки, обладающей свойством сферической симметрии в телесном угле 5°...15°, можно получить приближенные соотношения, устранив слагаемые, учет которых означает превышение точности измерений. Асимптотические формулы уменьшают погрешность численных расчетов и, самое главное, предоставляют возможность анализа физической сущности наблюдаемых в эксперименте эффектов.

Предлагается использовать вместо известных соотношений радиозатменного метода (Яковлев О.И., 1998) приближенные формулы для функций $X_{ap}(t)$, p(t) и $f_{ap}(t)$, справедливые при малом параметре $\xi(t)$ и произвольных значениях L_1 и L_2 :

$$X_{\rm ap}(t) = \{1 - L \cdot d\xi(t)/dp\}^{-1},$$

 $p(t) = R_0 + h(t) + L \cdot \xi(t),$

$$f_{\rm ap}(t) = \xi(t) \ V \cdot \lambda^{-1} \cdot L \cdot L_1^{-1},$$

Погрешность приближенных соотношений (2)-(4) при $\xi(t) < 10^{-3}$, $|n(h)-1| < 10^{-4}$ не превышает эффектов, возникающих из-за случайных флуктуаций частоты $\sigma_f = 0.01$ Гц и интенсивности $\sigma_x = 2\%$ зондирующего радиосигнала.

Представленные формулы (1)-(4) показывают возможность использования одинаковой методики при интерпретации данных радиозатмений на трассах связи ОА—СС или ОА—Земля.

Для анализа системы атмосфера-ионосфера разработан метод, использующий главное достоинство экспериментов радиопросвечивания на трассах связи OA \rightarrow CC и OA \rightarrow Земля: непрерывное (за время 2 мин) определение структуры вертикального профиля n(h) в диапазоне высот от верхней границы ионосферы до нижней границы облачного слоя атмосферы. Основной задачей нового метода является выделение на фоне

мешающего шума малых вариаций n(h) в системе атмосфера-ионосфера.

Покажем, что существует линейная связь изменений $X_{ap}(t)$ и $f_{ap}(t)$, шумовые компоненты которых не коррелируют. Наличие такой связи исключает интегральные преобразования, ограничивающие чувствительность результатов радиозатмений к малым вариациям n(h) при анализе данных, что позволяет обнаруживать колебания плотности в системе атмосфера-ионосфера. Дифференцируя (3) и (4), получим:

 $d\mathbf{p}(t)/d\mathbf{t} = V + L \cdot d\xi(t)/d\mathbf{t}.$

 $df_{\rm ap}(t)/dt = V \cdot \lambda^{-1} \cdot L \cdot L_1^{-1} \cdot d\xi(t)/dt.$

Подставляя (5) в (2), получим:

$$X_{\rm ap}(t) = 1 + L \cdot V^{-1} \cdot d\xi(t)/dt.$$

Подставляя (6) в (7), получим линейную связь вариаций частоты и рефракционного ослабления сигнала в процессе радиопросвечивания околопланетной сферически симметричной среды:

$$X_{\rm ap}(t) = 1 + [\lambda \cdot L_I \cdot V^{-2}] \cdot df_{\rm ap}(t)/dt.$$

Полученное соотношение (8) открывает возможность единого подхода к решению новых задач диагностики системы атмосфера-ионосфера в экспериментах радиопросвечивания на трассах связи ОА \rightarrow СС и ОА \rightarrow Земля. По данным об интенсивности сигнала $E_{\rm e}(t)$ (энергетической освещённости) и независящей от времени интенсивности сигнала $E_{\rm e0}$ при отсутствии зондируемой среды можно определить энергетический параметр – ослабление сигнала:

$$X(t) = E_{\rm e}(t) \cdot E_{\rm e0}^{-1}$$
.

Из соотношения (8), используя неэнергетические параметры сигнала $f_a(t)$ и $f_p(t)$, можно вычислить прогнозируемые рефракционные ослабления $X_a(t)$ и $X_p(t)$ сигнала а атмосфере и ионосфере. Сравнение функций $X_a(t)$, $X_p(t)$, X(t) является основным инструментом для выделения на фоне шума малых вариаций n(h), позволяющих анализировать тонкую структуру возмущений в системе атмосфера-ионосфера.

Соотношение (8) является основой метода диагностики слоистых структур в системе атмосфера-ионосфера. Для разделения влияния атмосферы и ионосферы используется соотношение (1), выделяющее плазменный эффект $\delta f(t)$. По $\delta f(t)$ вычисляется изменение частоты, обусловленное влиянием ионосферы $f_p(t)$, затем из функции $f_D(t)$ определяется влияние атмосферы $f_a(t)$.

Соотношение (8) используется для вычислений прогнозируемых рефракционных ослаблений в ионосфере $X_p(t)$ и атмосфере $X_a(t)$, которые затем сравниваются с экспериментальными функциями $X_D(t)$ и $X_C(t)$, полученными для двух зондирующих сигналов. Источники шума неэнергетического и энергетического параметров сигнала разные, поэтому корреляция $X_a(t)$ с $X_D(t)$ свидетельствует о влиянии атмосферы, а корреляция $X_p(t)$ с $X_D(t)$ свидетельствует о влиянии ионосферы, отсутствие корреляции указывает на шумы или на неприменимость используемых приближений.

Надежными критериями обнаружения стратифицированных структур в атмосфере являются совпадения вариаций $X_a(t)$, $X_D(t)$, $X_C(t)$, а в ионосфере – совпадение вариаций $X_{\rm p}(t)$ с $X_{\rm D}(t)$. Кроме того, такие совпадения подтверждают правомерность применения геометрической оптики и сферической симметрии зондируемой среды, т.е. указывают на достоверность определения параметров среды при решении обратной задачи. Корреляция функций $X_{a}(t), X_{D}(t), X_{D}(t), X_{C}(t)$, но несовпадение величины соответствующих эффектов, указывает на влияние мешающих факторов, к которым относятся: недостаточно малый интервал дискретизации данных, значительные флуктуации сигнала из-за инструментального шума или турбулентности среды, нарушение применимости лучевых приближений или сферической симметрии среды и т.д. В таких случаях интерпретация радиозатменных данных требует тщательного анализа возможных источников погрешностей и надежного обоснования достоверности обнаруженных эффектов.

6.1.5. Получение данных о волновых процессах в системе атмосфера-ионосфера

На основе радиозатменных данных с использованием соотношения (8) были получены достоверные сведения о тонкой структуре ионосферы Венеры в тех областях, где концентрация электронов становится очень малой на высотах 80...120 км над поверхностью планеты. Было установлено регулярное существование слоев ионизации под областью главного и нижнего максимумов ионизации на высотах меньше 120 км.

Полученные новые сведения стали результатом прецизионной обработки данных КА ВЕНЕРА-15,-16 с использованием оригинальных алгоритмов (Гаврик А.Л. и др., 2010а,б, Гаврик А.Л. и др., 2011б). На рис. 6.7 представлены экспериментальные результаты, демонстрирующие проявления обнаруженной нижней части ионосферы Венеры в интервале высот 80...120 км.

Рис. 6.7. Сравнение рефракционного изменения интенсивности *X*_D(*t*) ДМ-сигнала (красная кривая) КА ВЕНЕРА-15,-16 с вычисленным из частотных данных рефракционным изменением *X*_p(*t*) (синие точки) в четырех сеансах. По оси ординат – высота радиолуча над поверхностью Венеры.

По данным радиопросвечивания с помощью станций ВЕНЕРА-15,-16 впервые были обнаружены волновые явления в нижней ионосфере Венеры. На рис. 6.7 представлены результаты обработки данных радиопросвечивания, демонстрирующие стратифицированные периодические вариации показателя преломления, которые могут быть следствием волновой активности в системе атмосфера-ионосфера Венеры. На рис. 6.7c,d видно значительное нарастание амплитуды колебаний $X_{\rm D}(t)$ при увеличении высоты радиолуча от 80 до 120 км в нижней ионосфере, а выше 150 км флуктуации $X_{\rm D}(t)$ указывают на хаотические неоднородности ионизации. Иная картина наблюдается на рис. 6.7a,b. Амплитуда колебаний $X_{\rm D}(t)$ при увеличении высоты радиолуча от 80 до 120 км в нижней ионосфере меняется незначительно, а выше 150 км появляются вариации $X_{\rm D}(t)$, указывающие на образование слоистых структур выше максимума ионизации дневной ионосферы. По-видимому, в первом случае (рис. 6.7с,d) мы наблюдаем волновой процесс, который еще не распространился в верхнюю ионосферу, а во втором случае (рис. 6.7a,b) мы наблюдаем последствия волнового процесса, сформировавшего слоистые структуры в ионосфере.

Следует отметить, что в настоящее время волновые процессы в оболочках планет земной группы недостаточно изучены из-за ограниченности адекватных экспериментальных данных. Волновые явления в ионосфере Венеры наблюдались в данных прямых измерений КА PIONEER-VENUS, представленных на рис. 6.8 (Brace L.H., et al, 1991), но они были локализованы вблизи терминатора в области тени на высотах больше 170 км.

Рис. 6.8. Волновые явления в ионосфере Венеры, обнаруженные по данным КА PIONEER-VENUS (Brace L.H., et al, 1991) вблизи терминатора в области тени на высотах больше 170 км.

Таким образом, результаты радиозатменных экспериментов с КА ВЕНЕРА-15,-16 показали, что волновые возмущения постоянно присутствуют не только в земной ионосфере, но и в дневной ионосфере Венеры. Изучение природы таких процессов станет возможным в миссии ВЕНЕРА-Д путем сопоставления данных разных экспериментов. Предложенный метод позволит по измерениям вариаций интенсивности и фазы двух когерентных сигналов изучить мелкомасштабную структуру системы атмосфера-ионосфера, в результате будут получены новые сведения о распространении возмущений из атмосферы в ионосферу. Для решения таких задач энергетический потенциал радиолинии должен обеспечить возможность определения частоты и ее производной по времени с высокой точностью на интервале времени 0.01 с.

На основе представленных результатов можно сформулировать основные научные задачи радиозатменного эксперимента в проекте ВЕНЕРА-Д:

- Получение данных о распределении электронной концентрации в интервале высот от ~80 км до ~1000 км как функции высоты, широты, местного времени и сезона.
- Получение данных о температуре, плотности и давлении в атмосфере в интервале высот от ~35 км до ~100 км как функции высоты, широты, местного времени и сезона.
- 3. Изучение динамики многослойных структур в атмосфере и ионосфере Венеры, их связи с волновыми процессами, солнечной активностью и потоком солнечного ветра.
- 4. Выявление связей между процессами в ионосфере, термосфере и нижней атмосфере на дневной и ночной стороне Венеры.

6.2. Уточнение требований к радиолинии ОА→СС при выполнении научных экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы Венеры

Измерительное устройство, расположенное на борту СС (или на наземном пункте), определяет приращение фазы сигнала $\Delta \varphi(t)$ на интервале Δt . Суммирование таких приращений $\Delta \varphi(t)$ определяет вариации фазы сигнала $\Phi(t) = \sum \Delta \varphi(t)$, а величина $f(t)=(2\pi)^{-1} \Delta \varphi(t)/\Delta t$ является частотой сигнала. Суммирование приращений $\Delta \varphi(t)$ позволяет выделять на фоне случайных флуктуаций малое смещение частоты сигнала, вызывающее монотонное изменение функции $\Phi(t)$, но на графике монотонно изменяющейся функции $\Phi(t)$ случайные флуктуации становятся малозаметными, т.е. неудобными для оценки инструментального шума. Поэтому для сопоставления уровней шума разных сеансов обычно анализируются функции f(t), которые характеризуют флуктуации частоты радиосигнала даже при наличии малого регулярного смещения частоты, обусловленного исследуемой средой или какими-либо мешающими факторами.

Источники флуктуаций частоты сигнала;

1) нестабильность опорного осциллятора и искажения сигнала при излучении;

2) нестабильность опорного осциллятора и искажения сигнала при приеме;

3) флуктуации частоты и интенсивности из-за ограниченной точности алгоритмов цифровой обработки данных;

4) вариации частоты и интенсивности сигнала в среде распространения;

Априорное выделение доминирующего фактора, определяющего флуктуации частоты и интенсивности сигнала в одном реальном эксперименте, может оказаться малодостоверным. Поэтому целесообразно оценивать интегральный инструментальный шум на основе реальных измерений f(t), выполняя эксперименты в период малого влияния среды на трансформацию зондирующего сигнала.

При радиопросвечивании на трассе OA \rightarrow CC оценку интегральной величины инструментального шума можно получить при измерениях f(t) на контрольном участке, когда радиолуч OA \rightarrow CC распространяется вдали от ионосферы планеты. В этом случае флуктуации f(t) зависят только от инструментального шума, т.к. влиянием межпланетной плазмы при длине трассы связи меньше 10^5 км можно пренебречь.

При радиопросвечивании на трассе OA—Земля вдали от зондируемой ионосферы планеты оценку интегральной величины инструментального шума можно получить только на основе серии измерений f(t), выполненной в период малого влияния межпланетной плазмы и ионосферы Земли. Априорно предсказать такие периоды измерений невозможно, но из серии измерений f(t) можно выбрать сеанс с минимальными флуктуациями f(t) и полагать, что максимальный инструментальный шум σ_i не превышает полученных минимальных флуктуаций f(t). Превышение флуктуаций f(t) над σ_i в других сеансах измерений можно считать влиянием плазмы на трассе радиосвязи.

На рис. 6.9 показано, что в экспериментах с КА ВЕНЕРА-15,-16 флуктуации f(t) на контрольном участке измерений вдали от ионосферы Венеры сильно меняются от сеанса к сеансу, но величина случайных флуктуаций f(t) не опускается ниже 0.003 Гц. Поэтому можно полагать, что интегральный инструментальный шум не превышает значения 0.003 Гц на интервале измерений 1 с.

Рис. 6.9. Среднеквадратичное значение флуктуаций частоты сигнала с длиной волны 32 см при проведении экспериментов радиопросвечивания со спутников BEHEPA-15,-16.

Достоверность такой оценки инструментального шума была подтверждена совпадением данных двух независимых систем измерений f(t) и $\Phi(t)$ во время проведения исследования кометы Галлея (Савич Н.А. и др.,1986в), а также аналогичной статистикой флуктуаций f(t) КА ВЕНЕРА-11,-12,-13,-14 (Савич Н.А. и др.,1987). Скорость изменения интегральной электронной концентрации ∂N_{max} , представленная на рис.10 (Савич Н.А. и др.,1987), прямо пропорциональна флуктуациям приведенной разности частот $\sigma_{\delta f}$. Именно эти флуктуации являются главным мешающим фактором, который может привести к недостоверной радиофизической интерпретации при радиопросвечивании ионизованных оболочек космических объектов.

Рис. 6.10. Скорость изменения интегральной электронной концентрации ∂N_{max}, обусловленная солнечным ветром, она прямо пропорциональна флуктуациям приведенной разности частот σ_{δf}. Величина ∂N_{max} зависит от расстояния радиолуча R до Солнца (R_O – радиус Солнца).

Для радиолинии OA→CC флуктуации частоты в межпланетной плазме малы и основным источником флуктуаций частоты сигналов является инструментальный шум. Поэтому целесообразно сравнить флуктуации частоты в экспериментах просвечивания ионосферы Венеры на трассе КА→Земля и земной ионосферы на трассе GPS→CHAMP, результаты сравнения представлены на рис. 6.11.

Рис.6.11. Флуктуации частоты сигнала КА GPS с длиной волны 19 см по данным КА CHAMP (<u>http://isdc.gfz-potsdam.de</u>) (а,б,в) и флуктуации частоты ДМ-сигнала КА ВЕНЕРА-15 (г) в процессе зондирования нижней части ионосферы. Вариации частоты ДМ-сигнала КА ВЕНЕРА-15 при зондировании ионосферы Венеры (д). По оси абсцисс – высота прямой линии, соединяющей передатчик и приемник сигналов, над поверхностью планеты.

На рис. 6.11д показано изменение частоты $f_p(t)$ в одном из сеансов радиопросвечивания дневной ионосферы Венеры в интервале высот от ионопаузы до нижней границы ионосферы. Наиболее интересным является участок ниже 100 км,

показанный на рис. 6.11г, где влияние ионосферы уменьшается с уменьшением высоты, а влияние атмосферы увеличивается. На рис. 6.11г видно резкое увеличение флуктуаций $f_p(t)$ ниже 55 км, что обусловлено искажениями информации из-за уменьшившейся энергии сигнала до уровня, не позволяющего выполнять точные измерения $f_p(t)$.

Для сравнения на рис. 6.11а,б,в показаны флуктуации частот $f_{ap}(t)$ в трех сеансах радиопросвечивания на трассах *GPS*—*CHAMP*, полученные из данных, представленных на сайте (http://isdc.gfz-potsdam.de) для сигнала с длиной волны 19 см (флуктуации частоты сигнала с длиной волны 24 см в несколько раз больше). Интервал дискретизации этих данных 0.02 с, т.е. в три раза меньше, по сравнению с 0.058 с для данных КА ВЕНЕРА-15,-16, а флуктуации частоты почти на порядок превышают флуктуации частоты КА ВЕНЕРА-15,-16. Возможно, что основным фактором, определяющим величину высокочастотных флуктуаций частоты сигналов КА GPS, является широкополосная модуляция излучаемых сигналов, а не зондируемая среда. Необходимость фильтрации данных, представленных на рис. 6.11а,б,в, может существенно повлиять на точность определения $X_{ap}(t)$ из соотношения (Гаврик А.Л. и др., 2011).

Следует отметить, что использование метода дисперсионного интерферометра для увеличения точности результатов радиозатмений возможно только при условии когерентности зондирующих сигналов. На рис.12 представлено сравнение флуктуаций частоты сигналов КА GPS с длиной волны 19 см (желтая кривая) и 24 см (синяя кривая) по данным КА CHAMP (<u>http://isdc.gfz-potsdam.de</u>) когерентность сигналов нарушается.

B миссиях межпланетных к планетам солнечной системы излучались монохроматические сигналы, и инструментальные шумы находились в диапазоне 10⁻ ²...3·10⁻³ Гц благодаря высокому энергетическому потенциалу радиолинии (на уровне 50 дБГц), что обеспечило изучение даже слабоионизованной оболочки кометы Галлея (Савич и др., 1986в) и ночных ионосфер планет (Арманд Н.А. и др., 2010). В современных экспериментах зондирования околоземной оболочки (Яковлев О.И. и др., 2010) на трассах связи GPS->спутник широкополосная модуляция излучения мешает применению метода дисперсионного интерферометра. При коротких интервалах τ=0.02 с флуктуации частоты сигнала GPS с длиной волны λ =19 см превышают 0.5 Гц, а сигнала λ =24 см – превышают 2 Γп 6.12), поэтому метод дисперсионного интерферометра (рис. оказался малоэффективен для исследования тонкой структуры околоземной ионосферы.

Таким образом, можно сделать вывод о том, что в экспериментах радиопросвечивания газовой оболочки Венеры на трассе связи ОА-СС необходимо обеспечить высокий энергетический потенциал радиолинии (на уровне 50 дБГц) и, кроме
того, излучение когерентных монохроматических радиосигналов. Только в этом случае удастся эффективно использовать достоинства метода дисперсионного все интерферометра для ионосферы атмосферы фоне выделения влияния И на инструментального шума.

Рис. 6.12. Сравнение флуктуаций частоты сигналов КА GPS с длиной волны 19 см (желтая кривая) и 24 см (синяя кривая) по данным КА CHAMP (<u>http://isdc.gfz-potsdam.de</u>).

Необходимость фильтрации данных, представленных на рис. 6.11,12, может существенно повлиять на точность определения $X_{ap}(t)$ из соотношения (8). На рис. 6.13 представлены результаты сравнения $X_D(t)$ (сплошные кривые) с $X_p(t)$ (точки) в системе атмосфера-ионосфера на Венере при разных интервалах измерений $\tau = 0.47, 0.23, 0.116, 0.058$ с. Временной интервал $\tau = 0.46$ с примерно совпадает со временем прохождения

радиолучом области ионосферы, соответствующей размеру первой зоны Френеля. Длительный интервал измерений $\tau = 0.46$ с обеспечивает малые шумовые флуктуации $f_p(t)$. При уменьшении τ в 2 раза снижается энергия сигнала в 2 раза, что приводит к увеличению в 2 раза среднеквадратичного значения флуктуаций частоты сигнала и уменьшению точности при вычислении скорости изменения частоты в соотношении (8).

Рис. 6.13. Сравнение рефракционного изменения интенсивности $X_D(t)$ ДМ-сигнала (сплошные кривые) КА ВЕНЕРА-15,-16 (25.10.1983 г.) с вычисленным из частотных данных рефракционным изменением $X_p(t)$ (точки), при разных интервалах $\tau = 0.47, 0.23, 0.11, 0.06$ с. По оси абсцисс – высота прямой линии, соединяющей передатчик и приемник сигналов, над поверхностью Венеры.

На рис. 6.13г сравнение функций $X_D(t)$ и $X_p(t)$ свидетельствует о том, что шумовые флуктуации $X_D(t)$ и $X_p(t)$ незначительны, но наблюдаются очень большие различия между регулярными вариациями $X_D(t)$ и $X_p(t)$, обусловленные нарушением условий применимости соотношения (8). Похожие различия между регулярными вариациями $X_D(t)$ и $X_p(t)$ будут появляться и в случае сглаживания данных, полученных при малых τ , но имеющих значительные флуктуации $f_p(t)$, если будет использоваться фильтр с импульсной характеристикой длительностью $\tau = 0.46$ с.

На рис. 6.13в сравнение функций $X_D(t)$ и $X_p(t)$ свидетельствует о том, что при уменьшении временного интервала до $\tau = 0.23$ с различие между $X_D(t)$ и $X_p(t)$ уменьшается, но тонкая структура зондируемой среды искажена.

На рис. 6.136 видно, что при $\tau = 0.11$ с появляется согласованность между $X_D(t)$ и $X_p(t)$. При таком значении τ флуктуации $X_D(t)$ и $X_p(t)$ из-за шума еще достаточно малые, четко выявляется влияние ионизованных слоев, однако наблюдаются небольшие расхождения величины максимумов и минимумов функций $X_D(t)$ и $X_p(t)$, что обусловлено недостаточно малым интервалом τ .

При $\tau = 0.06$ с (рис 13а) проявляется корреляция даже мелкомасштабных структур зависимостей $X_D(t)$ и $X_p(t)$. Интервал измерений $\tau = 0.06$ с является минимально возможным в данном эксперименте с КА ВЕНЕРА-15,-16, т.к. энергия сигнала на интервале τ становится малой и при измерениях проявляются эффекты усиления шума, заметные на зависимости $X_p(t)$ рис. 6.13а (точки). Особенно четко резкое увеличение флуктуаций $X_p(t)$ наблюдается при h<70 км, где уровень сигнала уменьшился из-за ослабления в атмосфере: уменьшившийся энергетический потенциал радиолинии привел к тому, что измерения $f_p(t)$ стали недостоверными. Выше 70 км достаточно хорошее отношение сигнал/шум обеспечило возможность обнаружения периодических колебаний рефракционного изменения $X_D(t)$ зондирующего сигнала в процессе подъема радиолуча над поверхностью планеты (рис. 6.13а).

Представленные результаты свидетельствуют о необходимости обеспечения энергетического потенциала радиолинии ОА→СС не ниже, чем в представленных экспериментах, т.е. на уровне 50 дБГц.

Приемные и передающие устройства ОА и СС в проекте ВЕНЕРА-Д могут быть выполнены на основе разработанных приемо-передающих средств, которые планировалось использовать в проекте ФОБОС-ГРУНТ для проведения экспериментов радиопросвечивания газовой оболочки Марса на трассе связи ОА→СС (Засова Л.В. и др., 2010, Sun Y.Q. et al, 2010). Описание характеристик приемо-передающих средств

эксперимента VROE в проекте ВЕНЕРА-Д представлено в отчете (Засова Л.В., 2010). Достоинством такой радиолинии является наличие разработанной и апробированной конструкторской документации и аппаратуры, но данная разработка является уникальной и обладает ограниченными возможностями.

Оценим энергетический потенциал радиолинии эксперимента VROE в проекте ВЕНЕРА-Д. Мощность принятого сигнала P_r прямо пропорциональна плотности потока мощности излучения у приемной антенны и эффективной площади приемной антенны A_r (коэффициент усиления G_r), расположенной на расстоянии R от излучающей антенны. При отсутствии активных помех шумовую составляющую принятого сигнала можно считать белым гауссовским шумом и тогда мощность шумов приемника в полосе частот $\Delta \omega$, согласованной с полосой принимаемого сигнала, определяется соотношением $P_n = k$ $T_s \Delta \omega$, где T_s – суммарная температура шумов системы, k – постоянная Больцмана. Отношение сигнал/шум (s/n) находится как отношение мощности спектральной линии сигнала в согласованном с принимаемым сигналом фильтре к уровню мощности постоянной подставки, обусловленной шумом:

$$s/n = \frac{P_r}{P_n} = \frac{P_T \cdot G_T \cdot A_r \cdot \Psi}{4\pi \cdot R^2 \cdot k \cdot T_s \cdot \Delta \omega}$$

Здесь $P_{\rm T}$ – мощность излучения, $G_{\rm T}$ – коэффициент усиления излучающей антенны площадью $A_{\rm T}$, Ψ – коэффициент потерь мощности, который мы будем полагать равным 1.

Энергетический потенциал радиолинии П определяется отношением сигнал/шум в полосе 1 Гц и имеет размерность Гц или дБГц.

$$\Pi = \frac{P_T \cdot G_T \cdot A_r \cdot \Psi}{4\pi \cdot R^2 \cdot k \cdot T_s} = \frac{P_T \cdot A_T \cdot A_r \cdot \Psi}{\lambda^2 \cdot R^2 \cdot k \cdot T_s} = \frac{P_T \cdot G_T \cdot G_r \cdot \lambda^2 \cdot \Psi}{(4\pi \cdot R)^2 \cdot k \cdot T_s}.$$

В эксперименте VROE [2,5] максимальное расстояние между спутниками OA и CC не превышает 70 000 км. Минимальный энергетический потенциал радиолинии Π в этом эксперименте при Ψ = 1 представлен в таблице 1.

Частота излучения	416.5 МГц	833 МГц
P_{T}	7 Вт	7 Вт
$G_{ m T}$	6	6
Gr	6	6
T_{s}	200 К	200 K
Π	57 дБГц	51 дБГц

Таблица 6.1. Минимальный энергетический потенциал радиолинии.

Энергетический потенциал радиолинии превышает 50 дБГц, следовательно, в эксперименте VROE можно определять параметры радиосигналов с высокой точностью на интервалах времени 0.01 с.

Выполненный в (Гаврик А.Л. и др., 2011б) анализ свидетельствует о том, что в настоящее время актуальной задачей космических исследований, использующих орбитальные аппараты планет, является модернизация бортовой аппаратуры и наземных пунктов дальней космической связи. Цель модернизации – обеспечить разработку и внедрение универсальных, многофункциональных комплексов аппаратуры, которые позволят и управлять космическими аппаратами, и выполнять радиофизические эксперименты, и проводить радиолокацию космических объектов.

Современные компактные бортовые приемники сигналов с малым весом и энергопотреблением, созданные на современной элементной базе и апробированные при радиопросвечивании околоземной оболочки, позволяют проводить измерения и предварительную обработку данных радиопросвечивания на борту спутника в реальном масштабе времени, хранить и обрабатывать информацию, передавать ее на Землю по штатному каналу связи. Установка универсального, многофункционального приемника на борту ОА и СС позволит не только выполнять эксперименты радиопросвечивания на трассе связи спутник-спутник, но и обеспечит возможность реализации радиозатменных экспериментов на трассах Земля—СС и Земля—ОА штатными средствами радиосвязи в режиме излучения сигналов с наземного пункта связи. Высокий энергетический потенциал такой радиолинии обеспечит хорошее пространственно-временное разрешение при исследовании газовой оболочки Венеры в проекте ВЕНЕРА-Д.

Универсальный 3-х диапазонный (L-, S-, Х-диапазоны) бортовой приемник, который может обеспечивать прием служебной информации с Земли и реализацию экспериментов радиопросвечивания, позволит осуществлять радиозатменные эксперименты во всех межпланетных миссиях с использованием штатных средств радиосвязи. Такой приемник можно будет предлагать иностранным космическим агентствам для проведения совместных космических экспериментов с установкой отечественной аппаратуры на борт иностранных межпланетных станций. Такая схема экспериментов, видимо, будет единственно возможной при исследованиях далеких внешних планет Солнечной системы, т.к. обеспечит высокое отношение сигнал/шум на входе приемника. Установка такого приемника на ОА и СС в проекте ВЕНЕРА-Д откроет возможность получения недоступной ранее информации об ионосфере и атмосфере Венеры. Действительно, значительное увеличение объема информации за счет использования для экспериментов радиолиний с высоким потенциалом Земля—ОА, Земля—СС и ОА—СС является главным условием для выявления аномальных свойств газовой оболочки планеты и исследования свойств приповерхностной атмосферы Венеры методом бистатической локации. При определенных орбитах ОА и СС появится газовой оболочки Венеры, что позволит изучать ее динамику.

В качестве примера в таблице 2 представлены энергетические потенциалы радиолинии Земля—СС (или Земля—ОА) при расстоянии от Земли до Венеры 200 млн. км.

Длина волны	27 см	13.5 см	3.6 см
A_{T}	2500 м ²	2500 м ²	2500 м ²
P _T	10 кВт	10 кВт	10 кВт
Ar	0.5 м ²	0.5 м ²	0.5 м ²
$T_{ m s}$	200 K	200 K	200 K
П	65 дБГц	72 дБГц	83 дБГц

Таблица 6.2. Энергетические потенциалы радиолинии Земля→CC (или Земля→OA) при расстоянии от Земли до Венеры 200 млн. км.

Высокий энергетический потенциал радиолинии, превышающий 60 дБГц, позволит не только определять параметры радиосигналов с высокой точностью на интервалах времени 0.01 с, но и проводить высокоинформативные эксперименты бистатической радиолокации поверхности Венеры.

Таким образом, актуальной является задача разработки такого бортового приемника когерентных сигналов, который позволяет проводить и эксперименты радиопросвечивания на трассе ОА—СС, и эксперименты радиопросвечивания на трассе

Земля→ОА, и эксперименты радиопросвечивания на трассе Земля→СС. Рабочие диапазоны такого приемника должны быть согласованы с диапазонами наземных излучающих устройств, тогда приемник может быть элементом штатной линии связи для передачи служебной информации с Земли на борт спутника.

Обеспечение высокого энергетического потенциала радиолинии ОА→СС (не менее 50 дБГц) при реализации эксперимента двухчастотного радиопросвечивания обусловлено необходимостью увеличения соотношения между исследуемыми эффектами и инструментальным шумом. В частности, высокое отношение сигнал/шум при измерениях позволяет определять фазы, частоты и интенсивности сигналов с высокой точностью на интервале измерений 0.01 с, следовательно, требуется разработка высокостабильной бортовой аппаратуры.

- Необходимо обеспечить ОА и СС высокостабильным генератором (на интервалах 0.5...2 сек флуктуации частоты на уровне 10⁻¹²), из сигналов которого будут формироваться опорные сигналы. Качество генератора опорных сигналов будет определять инструментальные флуктуации частот когерентных сигналов, минимизация таких флуктуаций является одним из условий для обеспечения возможности исследования тонкой структуры ионосферы и атмосферы.
- 2. Необходимо обеспечить ОА высокостабильными по мощности и по фазе передатчиками когерентных радиосигналов двух диапазонов. Флуктуации мощности (более 1%) и фазы (более 1° на интервале времени 1 с) при излучении являются одним из главных мешающих факторов, ограничивающих точность метода радиозатмений.
- Необходимо обеспечить ОА мощным источником питания для одновременного излучения двух радиосигналов высокой мощности, что позволит обеспечить высокое отношение сигнал/шум на входе приемных устройств, необходимое для прецизионного определения вариаций амплитуд и фаз принимаемых сигналов.
- 4. Необходимо обеспечить ОА направленной двухдиапазонной антенной для одновременного излучения двух когерентных радиосигналов в режиме чистых несущих, т.к. модуляция сигналов уменьшает точность определения радиофизических эффектов, обусловленных просвечиваемой средой. Высокий коэффициент усиления антенны обеспечивает высокое отношение сигнал/шум на входе приемных устройств СС, а использование двухдиапазонной антенны устраняет паразитные набеги фазы при маневрах ОА.
- 5. Необходимо обеспечить СС направленной двухдиапазонной антенной для одновременного приема двух когерентных радиосигналов. Высокий коэффициент усиления антенны

обеспечит высокое отношение сигнал/шум на входе проемных устройств CC, а использование двухдиапазонной антенны устранит паразитные набеги фазы при маневрах CC.

6. Необходимо обеспечить СС трактами и приемными устройствами, которые не вносят существенных искажений в интенсивность и фазу принимаемых сигналов.

6.3 Проработка требований к радиолинии ОА→Земля при выполнении научных экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы Венеры

К характерным особенностям высокоинформативных экспериментов радиопросвечивания на трассе ОА—Земля относятся следующие:

- использование "мощного" бортового передатчика, излучающего два когерентных сигнала с помощью антенны большого диаметра;
- применение высокостабильного, термостатированного, стойкого к радиации бортового эталонного генератора;
- обеспечение высокой стабильности по фазе, групповой задержке и амплитуде в бортовой и наземной радиоаппаратуре;
- обеспечение оптимальной траектории ОА и высокой стабильности ориентации антенны ОА на Землю.

Одной из главных причин ограничения точности радиозатменных данных обычно являются инструментальные погрешности, которые определяются техническими характеристиками используемых радиосистем и в первую очередь, энергетическим потенциалом радиолинии. Максимальная чувствительность метода двухчастотного радиопросвечивания достигается только тогда, когда обеспечивается высокое отношение сигнал/шум на входе приемных устройств.

Величина энергетического потенциала радиолинии существенно влияет на величину погрешностей измерений, обусловленных инструментальными случайными флуктуациями мощности, фазы и частоты принятых радиосигналов, и, следовательно, определяет чувствительность и разрешающую способность метода радиопросвечивания. Чем больше энергия сигнала по сравнению с энергией шума, тем точнее определяются параметры радиосигналов и, следовательно, характеристики просвечиваемой среды. Увеличение энергетического потенциала радиолинии достигается увеличением мощности излучения, увеличением площади излучающей и приемной антенн, уменьшением температуры шума приемника когерентных сигналов.

Достоинством эксперимента радиопросвечивания на трассе *ОА*→Земля является отсутствие необходимости передачи на Землю большого объема информации с борта спутника, недостатком такого эксперимента является необходимость обеспечения высокой мощности излучения с помощью антенны большого диаметра. При реализации эксперимента приходится учитывать, что диаметр антенны ограничивается весогабаритными требованиями, а мощность излучения ограничивается энергообеспечением ОА.

Для обеспечения высокой мощности принимаемого сигнала можно планировать эксперименты радиопросвечивания в такие периоды, когда Венера находится на близком расстоянии от Земли. При расстоянии 60 млн. км от Земли до Венеры энергетический потенциал радиолинии будет в 9 раз выше, чем при расстоянии 180 млн. км. Для миссии ВЕНЕРА-Д длительностью 2 года оптимальные сезоны радиозаходов возможны в самом начале миссии, сразу после выхода КА ВЕНЕРА-Д на орбиту, и в конце миссии через 1.5 года после выхода на орбиту, когда Венера начнет сближаться с Землей. Малые вариации интегральной электронной концентрации на трассе связи (~10⁹ см⁻²), обусловленные уменьшением длины радиотрассы, и высокая мощность принимаемого сигнала обеспечат возможность исследования разреженной ионосферы: в нижней части дневной ионосферы, в области ионопаузы и на ночной стороне. В период приближения трассы радиосвязи к Солнцу (2 месяца до захода за Солнце и 2 месяца после выхода из-за больших вариаций интегральной электронной концентрации на трассе радиосвязи в солнечном ветре. Но в этот период времени можно осуществлять радиозондирование околосолнечной плазмы.

Определение характеристик ионосферы и атмосферы Венеры будет проводиться путем измерения вариаций интенсивности и фазы когерентных радиосигналов, распространяющихся через оболочку Венеры в процессе сближения радиолинии с планетой. Из-за сильной рефракции радиолучей в атмосфере Венеры сигналы могут наблюдаться несколько минут после захода ОА за диск планеты, однако, из-за критической рефракции недоступными для радиозатменных измерений являются высоты в атмосфере Венеры ниже ~32.8 км относительно среднего радиуса 6052 км. При радиозатменном зондировании глубоких слоев атмосферы (ниже 40 км) рефракционное ослабление уровня сигнала составляет около 25 дБ, а интегральное поглощение радиоволн Х-диапазона может достигать 15 дБ. Поэтому при проведении измерений параметров радиоволн в эксперименте ВЕНЕРА-Д мощность зондирующих когерентных сигналов должна быть достаточной для того, чтобы обеспечить высокое отношение сигнал/шум и

надежные измерения поглощения при ослаблении уровня сигнала на ~40 дБ. На рис. 6.14 представлены примеры ослабления мощности сигнала X диапазона в атмосфере Венеры.

В настоящее время максимальная мощность бортового передатчика может составлять не более 50 Вт, диаметр бортовой антенны не превышает ~2 м, температура шумов наземного приемника составляет ~40°. Антенны диаметром больше 1 м использовались в проектах PIONEER VENUS и VENUS EXPRESS (Pätzold M. et al, 2007), а в проектах BEHEPA-15,-16 (Савич Н.А. и др., 1986а,б, Яковлев О.И., 1998) и MAGELLAN диаметры антенн были больше 2 м.

Рис. 6.14. Изменение мощности сигнала диапазона 13.1 см в атмосфере Венеры по данным КА MAGELLAN в трех сеансах радиопросвечивания.

В качестве примера в таблице 6.3 представлены энергетические потенциалы радиолинии Земля—СС (или Земля—ОА) при расстоянии от Земли до Венеры 100 млн. км.

Таблица 6.3. Энергетические потенциалы радиолинии Земля→CC (или Земля→OA) при расстоянии от Земли до Венеры 100 млн. км.

Длина волны	27 см	13.5 см	3.6 см
A_{T}	1 м ²	1 m ²	1 m ²
P_{T}	20 Вт	20 Вт	20 Вт
Ar	2500 м ²	2500 м ²	2500 м ²
$T_{ m s}$	40 K	40 K	40 K
П	51 дБГц	57 дБГц	68 дБГц

При таких параметрах радиолинии можно обеспечить мощность принятого сигнала, достаточную для точных измерений фазы радиосигнала. Полученные значения энергетического потенциала радиолинии обеспечат измерение частоты сигнала Lдиапазона с точностью 0.003 Гц , достаточной для исследования разреженной ионосферной плазмы в нижней части ионосферы Венеры. Полученная оценка точности сопоставима с характеристиками экспериментов радиопросвечивания, выполненных станциями ВЕНЕРА-15,-16 и ВЕГА-1,-2. Поэтому в качестве стабильного генератора опорного сигнала следует использовать современные генераторы, обладающие стабильностью лучше 10⁻¹², такого типа генераторы были установлены на отечественных космических аппаратах ВЕНЕРА-15,-16 и ВЕГА-1,-2.

Для увеличения эффективности радиопросвечиваний целесообразно обеспечить энергетический потенциал радиолинии выше уровня 50 дБГц. При современном состоянии элементной базы это можно сделать путем изменения традиционной методики радиопросвечивания. Развитие цифровых технологий позволяет реализовать новые эксперименты. В таких сеансах радиопросвечивания наземный приёмо-передающий комплекс будет обеспечивать излучение в режиме несущих (без модуляции) когерентных радиосигналов в направлении исследуемой планеты. Антенна ОА (или нескольких ОА), направленная на Землю, будет принимать эти когерентные сигналы, и они будут обрабатываться бортовым приемником, осуществляющим измерения мощностей и фаз принятых сигналов, а также спектров эхо-сигналов при бистатической радиолокации. Из соотношения (11) и данных таблицы 6.2 следует, что энергетический потенциал радиолинии при излучении с наземного пункта увеличится в десятки раз благодаря увеличению мощности излучения до десятков киловатт, что позволит измерять мощности, фазы и частоты радиосигналов на коротких интервалах времени (~0.01 с) при малом уровне инструментального шума. Результаты измерений бортового приемника сохраняются в запоминающем устройстве и после окончания эксперимента передаются на Землю по штатному каналу связи.

Анализ методики проведения экспериментов радиопросвечивания на трассе Земля—ОА позволяет сформулировать следующие ее преимущества по сравнению с радиозатмениями на трассе связи ОА—Земля:

- 1. Значительно уменьшается энергопотребление и вес бортовой аппаратуры, предназначенной для проведения радиофизических исследований. Вес бортового приемника не превышает 1 кг, а его энергопотребление не превышает 2 Вт.
- Появляется возможность излучения высокостабильных сигналов с высокой степенью когерентности благодаря использованию квантового наземного генератора опорных сигналов, что существенно увеличит точность результатов радиофизических исследований.
- Появляется возможность излучения наземной антенной сигналов высокой мощности (~20 кВт и более), что обеспечит очень высокое отношение сигнал/шум на входе бортового приемника (в ~10 и более раз выше, чем в эксперименте ОА→Земля), а это увеличивает и точность, и пространственно-временное разрешение результатов радиофизических исследований.
- При высоком потенциале радиолинии может быть исследована самая нижняя часть ионосферы Венеры, обнаруженная недавно. Ее влияние во многих экспериментах было незаметно из-за мешающего влияния инструментальных шумов.
- 5. Высокое пространственно-временное разрешение результатов радиопросвечивания обеспечит идентификацию стратифицированных периодических возмущений в атмосфере и ионосфере, т.е. откроется возможность изучать источники волновых процессов в газовых оболочках планет.
- При высокой мощности сигналов вблизи ОА отсутствует необходимость использования бортовых приемных антенн большого диаметра, что существенно уменьшит вес и габариты бортового оборудования.

- 7. При использовании антенны малого диаметра увеличится ширина диаграммы ее направленности, поэтому отсутствует необходимость очень точной ориентации антенны и экономится ресурс ОА.
- 8. Прием на борту сигналов высокой мощности при использовании антенны малого диаметра с широкой диаграммой направленности обеспечит радиопросвечивание атмосферы вплоть до уровня критической рефракции во всех экспериментах без коррекции ориентации бортовой антенны.
- 9. Широкая диаграмма направленности бортовой антенны позволит в каждом сеансе радиопросвечивания проводить бистатическую радиолокацию поверхности планеты (до настоящего времени проведено менее 30 таких экспериментов). Высокая мощность отраженного поверхностью сигнала является важным звеном для детального изучения структуры поверхности.
- Проведение регулярной бистатической радиолокации предоставит уникальную возможность изучения атмосферы вблизи поверхности Венеры. Сведения о приповерхностной атмосфере Венеры до настоящего времени очень ограничены.
- 11. Излучение с Земли может одновременно приниматься несколькими спутниками, находящимися на орбите планеты, если они будут оборудованы соответствующими приемниками. Такая возможность обеспечит контрольные измерения вариаций параметров плазмы на трассе связи для их учета в эксперименте радиопросвечивания, что особенно важно при исследовании ночной ионосферы.
- 12. При определенных орбитах нескольких ОА появится возможность радиопросвечивания одних и тех же или разных областей околопланетного пространства почти одновременно, что предоставит уникальную возможность анализа пространствено-временной структуры атмосферы и ионосферы.
- 13. Наличие на орбите планеты нескольких ОА, оборудованных одинаковыми приемниками когерентных сигналов, позволит вести регулярный мониторинг ионосферы и атмосферы планеты, т.е. предоставит важные сведения для сравнительной планетологии.
- 14. Многотрассовые измерения с помощью нескольких ОА вдали от газовой оболочки планеты предоставят возможность детально исследовать динамику межпланетной и околосолнечной плазмы.
- 15. Высокое отношение сигнал/шум в радиофизических экспериментах является важным условием для изучения вопросов распространения радиоволн через слоистые структуры, в частности, появится возможность получить экспериментальную оценку размеров области

ионосферы и атмосферы, которая вносит главный вклад в вариации параметров радиоволн.

Таким образом, есть две возможности обеспечения высокого энергетического потенциала радиолинии ОА→Земля в радиозатменных экспериментах. Одна из них реализуется установкой на борту ОА антенны большого диаметра (больше 1 м) и передатчика с высокой мощностью излучения двух когерентных сигналов (больше 20 Вт). Вторая возможность реализуется путем модернизации приемо-передающего комплекса наземной и бортовой аппаратуры, которая позволит излучать когерентные сигналы с наземной антенны и принимать их штатными средствами на борту ОА.

Заключение

Для решения фундаментальных задач сравнительной планетологии в проекте ВЕНЕРА-Д предполагается выполнить многократные радиопросвечивания ионосферы и атмосферы Венеры с помощью орбитального аппарата и субспутника, зондирование поверхности Венеры методом бистатической радиолокации, радиопросвечивания межпланетной среды и околосолнечной плазмы при заходе Венеры за Солнце. Эксперименты радиопросвечивания околопланетной среды можно проводить на трассах радиосвязи ОА—СС, ОА—Земля, Земля—ОА, Земля—СС.

В отчете предложены приближенные соотношения для анализа данных радиозатмений, эти соотношения применимы при произвольном расположении приемника и передатчика радиосигналов. Предложен метод для выявления слоистых структур в системе атмосфера-ионосфера по измерениям интенсивности и частоты двух когерентных сигналов в радиозатменных экспериментах на трассах связи ОА-СС, ОА-Земля, СС-Земля.

Анализ опубликованных результатов завершенных радиозатменных экспериментов показал, что в проекте ВЕНЕРА-Д по измерениям вариаций интенсивности и частоты двух когерентных сигналов можно изучать мелкомасштабную структуру зондируемой среды и получать новые сведения о распространении возмущений из атмосферы в ионосферу.

На основе представленных результатов сформулированы основные научные задачи радиозатменного эксперимента в проекте ВЕНЕРА-Д:

- Получение данных о распределении электронной концентрации в интервале высот от ~80 км до ~1000 км как функции высоты, широты, местного времени и сезона.
- Получение данных о температуре, плотности и давлении в атмосфере в интервале высот от ~35 км до ~100 км как функции высоты, широты, местного времени и сезона.

- 3. Изучение динамики многослойных структур в атмосфере и ионосфере Венеры, их связи с волновыми процессами, солнечной активностью и потоком солнечного ветра.
- 4. Выявление связей между процессами в ионосфере, термосфере и нижней атмосфере на дневной и ночной стороне Венеры.

Показано, что для решения задач радиофизических исследований в проекте ВЕНЕРА-Д целесообразно увеличить энергетический потенциал радиолинии до 50...60 дБГц, чтобы обеспечить высокую точность измерений интенсивности когерентных сигналов, частоты и ее производной с разрешением по времени 0.01с.

Показано, что в эксперименте VROE, предложенном ИКИ РАН для проекта ВЕНЕРА-Д, энергетический потенциал радиолинии превышает 50 дБГц, что обеспечит уникальную возможность исследования возмущений в системе атмосфера-ионосфера по данным радиопросвечивания на трассе связи ОА—СС.

Выполнена оценка величины энергетического потенциала радиолинии ОА→Земля для проекта ВЕНЕРА-Д. При мощности передатчика орбитального аппарата 20 Вт и эффективной площади антенны 1 м² энергетический потенциал радиолинии достигает величины 50 дБГц, что позволяет определять с разрешением по времени 0.01с параметры когерентных радиосигналов с точностью, достаточной для исследования слоистых структур в атмосфере и ионосфере Венеры. Энергетический потенциал радиолинии, превышающий 50 дБГц, позволит исследовать поверхность Венеры методом бистатической радиолокации и глубокие слои солнечной короны при ее зондировании.

Предложено рассмотреть вопросы модернизации наземного и бортового радиотехнического комплекса с целью создания универсального, многофункционального комплекса приемо-передающей аппаратуры, позволяющего излучать когерентные монохроматические сигналы наземной антенной и определять параметры этих сигналов бортовым приемником. Усовершенствованные средства радиокомплекса обеспечат двухчастотную радиолокацию космических объектов, управление межпланетными станциями, осуществление экспериментов двухчастотного радиопросвечивания газовой оболочки и бистатическую радиолокацию поверхности планеты. Универсальный бортовой приемник когерентных радиосигналов L-, S-, Х-диапазонов, способный принимать на двух ортогональных поляризациях излучаемые с Земли когерентные радиосигналы, и высокий энергетический потенциал радиолинии ОА-Земля (60 дБГц и выше) обеспечат высокое качество радиофизических исследований планет Солнечной системы. Наличие бортового приемника и наземной излучающей аппаратуры позволит планировать

совместные эксперименты с установкой отечественной аппаратуры на борт иностранных межпланетных станций.

Показано, что применение многофункционального приемника на борту ОА и СС в проекте ВЕНЕРА-Д значительно увеличит объем и качество экспериментальной информации за счет использования радиолиний Земля—ОА, Земля—СС и ОА—СС с энергетическим потенциалом выше 60 дБГц. Кроме того, появится возможность получения недоступной ранее информации об ионосфере и атмосфере Венеры, необходимой для выявления аномальных свойств газовой оболочки Венеры.

Таким образом, все поставленные в Техническом задании задачи выполнены полностью. Представленный анализ результатов, достигнутых в данной области, и проведенные исследования показали важность поставленных задач и пути их решения.

7. ИНФОРМАЦИОННЫЙ ОБМЕН В ПРОЕКТЕ ВЕНЕРА –Д. УТОЧНЕНИЕ ТРЕБОВАНИЙ К РАДИОЛИНИЯМ МИССИИ ВЕНЕРА-Д В ЧАСТИ ПЕРЕДАЧИ НАУЧНОЙ ИНФОРМАЦИИ, В ТОМ ЧИСЛЕ ПЕРЕДАЧИ ИНФОРМАЦИИ С ПА

Данный раздел посвящен предварительной оценке информационных возможностей передачи научной информации с аппаратов, входящих в комплексный космический проект Венера-Д.

7.1. Схема информационного обмена

Проект ВЕНЕРА-Д предполагает разработку, создание и запуск нескольких космических аппаратов (КА) для комплексного исследования планеты Венера. В их числе орбитальный аппарат (ОА) на вытянутой эллиптической орбите с периодом обращения порядка земных сутоксуток, субспутник с периодом обращения около 2 суток, спускаемый аппарат (СА) с временем жизни на поверхности Венеры 2-3 часа или более. Возможна проработка включения атмосферного зонда (АЗ), плавающего в среднем облачном слое на высоте ~ 55 км или под облаками (в этом случае атмосферным зондом может быть «ветролет») с временем жизни от нескольких дней до нескольких недель и малые спускаемые аппараты (МСА) с временем жизни порядка 1 часа, сбрасываемые с атмосферного зонда по мере его движения над поверхность планеты, оснащенные метеорологическими датчиками.

Настоящий материал рассматривает информационные связи космических аппаратов, входящих в комплексный проект ВЕНЕРА-Д, с Землей и в некоторых случаях между собой.

Более подробный анализ информационных связей может быть сделан после принятия решения о полном составе космических и земных средств, входящих в проект.

На рис. 7.1 изображена полная структурная схема информационного обмена в проекте ВЕНЕРА-Д.

161

Рис. 7.1. Структурная схема информационного обмена в проекте ВЕНЕРА-Д.

7.2. Магистральный канал орбитальный аппарат- Земля

Магистральный канал, созданный ранее для проекта ФОБОС-ГРУНТ, в значительной мере отвечает требованиям к магистральному каналу ОА-Земля проекта ВЕНЕРА-Д.

Канал предназначен для работы в X диапазоне как в линии борт-Земля, так и в линии Земля-борт. Этот диапазон в соответствии с международным Регламентом радиосвязи выделен для передачи информации по каналам Космос-Земля и Земля-Космос.

Для обеспечения высокой скорости передачи информации на борту должна быть установлена управляемая параболическая антенна. Основная наземная станция, предназначенная для управления и приема информации, расположена вблизи г. Уссурийск и оборудована антенной диаметром 70м.

К моменту реализации проекта ВЕНЕРА-Д можно расчитывать на привлечение к работе станций в г. Евпатория (Украина) с антенной диаметром 70м и в Медвежьих Озерах (под Москвой) с антенной диаметром 64м. В линии борт-Земля заложено использование высокоэффективных корректирующих кодов (сверточный код K=9, R=1/3, турбокод), позволяющих снизить требуемое отношение сигнал-шум на бит информации Eb/No до 1...3 дБ.

Дальность связи с Землей меняется в процессе движения Земли и Венеры вокруг Солнца от 0.3 до 1,7 а.е. (от 45 до 255 млн.км), т.е. почти в 6 раз. Скорость передачи информации соответственно дальности будет меняться на 1,5 порядка.

Наземная станция в Уссурийске оборудована передатчиком мощностью 20 кВт, что обеспечивает надежную передачу на борт КА команд и программ. Магистральный канал позволяет также измерять радиальную скорость КА с точностями лучше 1 мм/с и дальность до КА с точностями в десятки метров.

Головным разработчиком бортовой и наземной аппаратуры магистрального канала является Научно-исследовательский институт «Российские космические системы».

Ниже приведена оценка информационной скорости в канале ОА-Земля для нескольких вариантов бортовой аппаратуры.

Диапазон связи		Х (8,4 ГГц)		
Земная антенна (Уссурийск),	70м			
Выходная мощность бортового передатчика:		а. 10Вт;		
		б. 20Вт		
Бортовая остронаправленная антенна:				
Диаметр	в. 1м	г. 1,5м		
Ширина диаграммы	2,5 град.	1,7 град.		
Гребуемая точность наведения	15 угл.мин.	10 угл.мин.		
Коэффициент усиления	36 дБ	39,5 дБ		

Таблица показывает реализуемые скорости передачи на разных дальностях для разных вариантов бортовой радиосистемы орбитального аппарата.

Дальность	Скорость передачи для вариантов бортовой системы,			
	кбит/с			
	10Вт, 1м	10Вт, 1,5м	20Вт,1м	20Вт,1,5м
50 млн.км	400	840	800	1680
100 млн.км	100	210	200	420
150 млн.км	45	95	90	190
200 млн.км	25	56	50	112

Таблица показывает, что при максимальном из рассматриваемых, но вполне реальном варианте бортовой радиосистемы на средних дальностях (в течение более 50% времени) может быть достигнута скорость передачи 200...400 кбит/с.

7.3. Передача данных со спускаемого аппарата.

В проекте ВЕНЕРА-Д как основной рассматриваются вариант сброса спускаемого аппарата (СА) на Венеру с попадающей траектории. Затем ОА производит маневр ухода с попадающей траектории на траекторию перехода на вытянутую эллиптическую орбиту вокруг планеты. Коррекция выбирается так, чтобы ОА отставал по времени от СА на 4 часа. При этом ОА может быть использован как ретранслятор для передачи данных с СА на Землю. Определяющим для скорости передачи информации здесь будет изменение расстояния между СА и ОА на интервале отставания в течение 4 часов.

Для СА также целесообразно рассмотреть вариант передачи информации прямо на Землю в том случае, если он садится на видимую с Земли сторону Венеры.

Передача информации с СА на ОА.

Оценочный расчет дальности связи между СА и отстающим от него по времени ОА дает следующие цифры.

Отставание, час	4	3	2	1
Дальность СА-ОА,	75	60	45	25
тыс.км				

При расчете скорости передачи информации предполагаем, что ОА не ориентирован в направлении СА (на подлете к планете, очевидно, ОА ориентирован для выполнения маневра выхода на орбиту вокруг Венеры) и связь должна быть обеспечена с начала входа СА в атмосферу (т.е. за 4 часа и 75 тыс. км).

Параметры радиоканала: Диапазон частот Мощность передатчика СА Усиление антенны СА

(ненаправленная антенна в углах +/- 70...85 град.);

Усиление антенны ОА 0...2 дБ

(полуплоскость, обращенная к Венере);

При этих условиях скорость передачи в линии CA-OA составит 200...1000бит. Можно существенно усложнить программу взаимодействия CA и OA, а именно:

- обеспечить управление скоростью передачи информации от СА к ОА по качеству принимаемого на ОА сигнала путем передачи соответствующих команд с ОА;

 обеспечить ориентацию антенны ОА в сторону СА (не ясно, возможно ли это с учетом подготовки ОА к торможению для выхода на орбиту Венеры).

В этом случае скорость передачи можно увеличить на начальном участке (за 4 часа до подлета) на порядок до 2...10 кбит/с и до 10 ...50кбит/с за 1 час до подлета.

Другие пути увеличения скорости передачи в канале CA-OA связаны с существенным изменением схемы полета.

Так например, уменьшение отставания ОА от СА до 2 часов уменьшит дальность связи до 45 т.км и позволит увеличить скорость передачи в 2,7 раза. При этом, однако, время связи с СА составит 1 час в течение спуска СА в атмосфере Венеры и 1 час после посадки на поверхность.

В варианте отделения СА от ОА после выхода ОА на Венерианскую орбиту можно рассчитывать на использование ориентированной антенны на ОА для обеспечения взаимной связи с СА. В этом варианте и дальность связи может быть меньше, а направленность антенны ОА может составлять 12...14 дБ. Возможность реализации подобных сценариев может быть оценена разработчиком миссии - НПО им. Лавочкина.

Передача информации СА-Земля

Разработка долгоживущего CA (более 1 часа на поверхности планеты) требует рассмотрения возможностей прямого канала связи CA-Земля. Этот вариант возможен при посадке на видимую с Земли сторону планеты.

Для увеличения скорости передачи СА-Земля необходимо использовать разные пути. Один из них может быть обеспечен увеличением усиления бортовой антенны СА в направлении Земли,

другой – с увеличением площади Земных антенн, принимающих сигнал СА. Рассмотрим оба пути подробнее.

Увеличение усиления антенны СА в направлении Земли до 10 дБ несложно осуществить в S диапазоне путем установки спиральной антенны сравнительно небольших размеров (диаметр 4...5см, длина несколько десятков сантиметр). Такая антенна будет иметь ширину диаграммы направленности порядка 60 град., что обеспечит надежную связь при раскачивании СА во время парашютирования и при штатной посадке. Скорость передачи с такой антенной может быть увеличена в несколько раз по сравнению с антенной, излучающей в полусферу, и может составить до 1000 бит/с.

Однако, этот вариант накладывает жесткие ограничения на место посадки СА и соответственно на угол между местной вертикалью и направлением на Землю.

Увеличение площади Земных антенн, принимающих сигнал СА, может быть обеспечено привлечением к работе с СА сети радиотелескопов при суммировании сигналов от них. Одним из вариантов является привлечение Европейской сети радиотелескопов VLBI (Joint Institute for VLBI in Europe – JIVE). Как пример такой работы можно привести прием сигнала от Европейского зонда Hugens, садившегося на Титан. В сеть входит около 20 радиотелескопов с антеннами диаметром от 10 до 32м, работающих как в S так и в X диапазонах. Их привлечение позволит примерно удвоить скорость передачи до 2000бит/с. В сеть также входит огромный радиотелескоп в Аресибо (Мексика) (диаметр 300м), привлечение которого могло бы сразу удесятерить скорость передачи (до 10000 бит/с). Надо только иметь ввиду, что углы слежения этого радиотелескопа составляют только +/- 18 град. относительно вертикали, что также накладывает жесткие требования на время спуска и посадки СА.

7.4. Передача информации с малых СА

В настоящее время из проекта ВЕНЕРА-Д не исключен вариант использования малых спускаемых аппаратов (МСА) для исследования атмосферы Венеры в различных точках планеты.

Эти малые СА могут сбрасываться с аэростатного зонда (АЗ) в

процессе его полета и тогда должна быть обеспечена их связь с АЗ, либо отделяться от ОА и поддерживать связь с ОА.

В обоих случаях можно рассчитывать только на простые антенны с усилением не более 2 дБ и передатчики небольшой мощности на МСА.

Вариант связи МСА-ОА подобен рассмотренному выше варианту связи СА-ОА.

Ниже рассмотрим вариант связи МСА через АЗ.

Передача информации с малого СА, отделяемого от АЗ

Время связи определяется временем выхода АЗ из зоны видимости СА, которое связано со скоростью ветра в атмосфере Венеры на высоте полета АЗ. На высотах около 55км скорость ветра оценивается не выше 100м/с. Зона видимости для СА, садящегося на поверхность Венеры, относительно АЗ плавающего на высоте 55км составляет ~770км. Однако, такая дальность достигается при углах места относительно горизонта 0 град. Ряд причин требуют принять величину угла места для СА не менее 5 град. Эти причины - раскачивание СА на участке парашютирования, неизвестный рельеф местности и углы наклона СА после посадки, сложность конструирования антенны с шириной диаграммы направленности 180 град. В оптимистическом случае необходимо рассчитывать на связь при углах более 5 град. относительно горизонта. Этому соответствует длина пути АЗ в атмосфере порядка 400км и дальность связи около 410км. Такой путь АЗ пройдет минимум за 4000с, что и определяет максимальное время спуска СА в атмосфере и его жизни на поверхности Венеры.

Рассмотрим параметры линии связи малый СА - АЗ.

Диапазон частот для связи целесообразно выбрать в соответствии с рекомендациями CCSDS – UHF диапазон (~400МГц), что позволит

в большой степени совместить радиоаппаратуру А3, используемую для линий СА-А3 и А3- ОА. В этом диапазоне можно получить максимальный энергопотенциал радиолинии при небольших размерах бортовых малонаправленных антенн. Для расчета энергетического баланса примем:

- диапазон частот 400МГц (401.5 или 437.1 МГц),
- мощность передатчика СА 1 Вт,
- дальность связи 410 км,

коэффициент усиления антенны СА на углах места

10 +/- 5 град 3 дБ, в зените -3 дБ (воронкообразная диаграмма),

- коэффициент усиления антенны АЗ по вертикали вниз -3 дБ,

по горизонту +3 дБ (воронкообразная диаграмма),

- потери в канале -3 дБ (поляризационные, модуляционные, аппаратные, прочие неучтенные).

Расчетный энергопотенциал на максимальной дальности -

Ps/No ~ 2...3 x 10*(6). Это позволяет рассчитывать на скорость передачи информации 1мбит/с.

Важным экспериментом на СА является получение видеоизображений поверхности Венеры во время спуска. Оценим возможный темп съемки с учетом указанной скорости передачи. Пусть съемка ведется камерой с разрешением 1000 x 1000 элементов при 10 разрядном кодировании яркости.

Сжатие видеинформации позволяет сократить объем информации в 2...3 раза, с учетом этого получим темп съемки 1 кадр в 10 с.

На нижнем участке спуска, где получение изображения особенно актуально, скорость снижения ~ 20 м/с, что позволяет иметь снимки с интервалом по высоте ~ 200м.

Очевидно, что вариант ретрансляции информации через атмосферный зонд является весьма эффективным.

7.5. Ретрансляционный канал атмосферный зонд – орбитальный аппарат

Рассматриваемая орбита орбитального аппарата (OA) – эллиптическая с высотой апоцентра порядка 60 000 км. Такая орбита позволяет иметь продолжительные сеансы связи с A3, который может существовать в атмосфере Венеры несколько суток. Для ретрансляционного канала A3-OA целесообразно использовать диапазон частот, рекомендованный документами CCSDS – это UHF диапазон (~ 400МГц). Этот диапазон при сравнительно небольших размерах малонаправленной антенны на A3 позволяет достичь сравнительно высокого энергопотенциала радиоканала. При этом на OA должна быть установлена средненаправленная антенна, что потребует ориентации OA в направлении поверхности Венеры.

Так антенна с шириной диаграммы направленности 60 град. на уровне –3дБ будет иметь коэффициент усиления около 10дБ в максимуме, а при углах +/- 60 град. коэффициент усиления составит около +3дБ. Таким образом, если ОА ориентирован антенной на центр Венеры, АЗ будет попадать в диаграмму направленности антенны ОА (с усилением более 5дБ) на высотах более 3000км, т.е. наибольшую по времени часть витка. При удалении ОА в сторону апоцентра направление на АЗ приближается к оси диаграммы направленности антенны ОА и усиление в сторону АЗ увеличивается до 10 дБ , частично компенсируя увеличение дальности связи.

Следует отметить, что такая ориентация ОА в сторону Венеры является необходимой для проведения всех основных научных экспериментов, планируемых для ОА.

Рассчитаем энергопотенциал ретрансляционного радиоканала АЗ-ОА.

Диапазон частот -	UHF (401.5, 437.1	МГц)
Мощность передатчика АЗ - 3	5 Вт, потребление	е - 20Вт
Коэффициент усиления антен	ны АЗ	-3дБ
Коэффициент усиления антен	ны ОА	+10дБ
Максимальная дальность		60000км
Потери в канале (поляризацио	онные, модуляцион	ные,

аппаратные, нестабильность ориентации АЗ, прочие) -5дБ.

Для этих исходных данных получим величину энергопотенциала в виде отношения мощности сигнала к спектральной плотности мощности шума Ps/No = 3000, что при применении избыточного кодирования (например, сверточный код-декодер Витерби) позволит обеспечить скорость передачи 1000 бит/с на максимальной дальности. Если использовать командную линию OA-A3, можно реализовать адаптивный радиоканал сброса информации с A3 с переменной скоростью передачи информации, с увеличением на порядок скорости на меньших расстояниях. Для этого на борту OA необходимо иметь аппаратуру, позволяющую оценить отношение сигнал-шум (вероятность ошибки) и в соответствии с полученными результатами выдавать на A3 команды для ступенчатого изменения скорости передачи.

Учитывая возможность проведения длительных сеансов связи между АЗ и ОА, можно рассчитывать на получение такого объема информации, который достаточен для передачи изображений поверхности с АЗ с разрешением 1000 * 1000 элементов с темпом 2...3 кадра в час.

7.6. Интерферометрия с большой базой для атмосферного зонда

Одной из важнейшей научных задач проекта ВЕНЕРА-Д является изучение циркуляции атмосферы на высотах ниже и выше облачного слоя. Запуск АЗ в атмосферу Венеры с временем жизни в несколько суток или недель и служит этой задаче. При этом необходимо обеспечить получение данных о движении АЗ и его местоположении во времени. Частично эти данные можно было бы получить, производя измерения доплеровской скорости и дальности между АЗ и ОА. Однако эти данные недостаточны и кроме того их ценность зависит от взаимного расположения ОА и АЗ.

Мощным инструментом получения данных о координатах АЗ при его полете в атмосфере является интерферометрия с большой базой (VLBI), реализуемая с использованием наземных радиотелескопов. Точность измерений VLBI определяется длиной рабочей волны, длиной интерферометрической базы, а также ионосферными и атмосферными ошибками, нестабильностью бортового осциллятора, отношением сигналшум и некоторыми другими причинами.

Для проведения длинно-базовой интерферометрии на борту АЗ должен быть установлен небольшой радиопередатчик мощностью 1...3Вт, работающий в S или X диапазоне, возбуждаемый высокостабильным осциллятором. Масса передающей аппаратуры, устанавливаемой на АЗ для реализации измерений VLBI, составляет около 0.5кг, потребление около 15 Вт.

На Земле имеется широкая сеть радиотелескопов, в том числе с антеннами большого диаметра, объединенная Европейским Институтом VLBI (Joint Institute for VLBI in Europe – JIVE). Радиотелескопы оборудованы самыми современными средствами регистрации и обработки сигнала (например, аппаратурой Марк 5).

Институт JIVE мог бы принять участие в совместном эксперименте с АЗ при соответствующем приглашении иностранных участников.

В измерениях могли бы также участвовать Российские станции в Уссурийске и Медвежьих Озерах при оснащении соответствующей аппаратурой.

Для проекта ВЕНЕРА-Д относительное знание местоположения АЗ по измереням VLBI может составлять доли метра и лучше, а время измерения единицы секунд.

Передача информации от АЗ на Землю

Использования интерферометрии с большой базой для определения координат АЗ дает возможность передачи телеметрической информации по тому же радиоканалу. Выше

приведенные данные бортовой и наземной аппаратуры позволяют рассчитывать на информационную скорость порядка 10...30 бит/с на дальностях в 150 млн.км.

7.7. Использование орбитального радиолокатора для получения координат атмосферного зонда.

В настоящее время отсутствует информация о параметрах бортового радиолокатора.

Дальнейшая проработка проекта ВЕНЕРА-Д поможет выбрать конкретные техническиерешенияинформационногообеспеченияпроекта.

8. ПРОРАБОТКА ДЕТАЛЕЙ УСТАНОВКИ МНОГОКАНАЛЬНОГО ДИОДНО-ЛАЗЕРНОГО СПЕКТРОМЕТРА (МДЛС–ИСКРА-В) НА ПА И ОБЕСПЕЧЕНИЯ ПОЛУЧЕНИЯ ВЕРТИКАЛЬНОГО РАСПРЕДЕЛЕНИЯ ЛЕТУЧИХ И ИХ ИЗОТОПОВ, КЛЮЧЕВЫХ ДЛЯ ПОНИМАНИЯ ЭВОЛЮЦИИ АТМОСФЕРЫ. ВЫБОР ОСНОВНЫХ МОЛЕКУЛ И ИХ ИЗОТОПОВ (SO2, SO, COS, CO2, H2O, HDO, CO, HCL, C2H2, H2S, HF И Т.Д.), КОТОРЫЕ МОЖНО ИЗМЕРИТЬ В АТМОСФЕРЕ ВЕНЕРЫ С УЧЕТОМ ПАРАМЕТРОВ СУЩЕСТВУЮЩИХ ДИОДНЫХ ЛАЗЕРОВ, ИЗЛУЧАЮЩИХ В БЛИЖНЕМ И СРЕДНЕМ ИК ДИАПАЗОНАХ

8.1. Об особенностях отбора и разрежения газовых проб венерианской атмосферы на этапе снижения посадочного аппарата миссии Венера-Д.

Основной целью прибора «ИСКРА-В» является измерение содержания сернистых компонент и других газовых составляющих атмосферы Венеры на этапе снижения ПА от момента сброса его защитной полусферы на высоте около 65 км вплоть до касания поверхности Венеры. Время измерений будет определяться циклограммой снижения ПА. Так, при скорости снижения около 0,5 км/мин и времени одного полного цикла спектральных измерений 2 мин можно ожидать реализации высотного разрешения регистрируемых вертикальных профилей содержания измеряемых газов на уровне 1 км.

Чувствительность прибора «ИСКРА-В» к поглощению в максимуме спектральной линии составит относительную величину до 10^{-5} , что обеспечит запас детектируемости содержания газов на три порядка величины при расчетном поглощении порядка 3%. Для более слабого уровня относительного поглощения динамический диапазон будет, соответственно, меньшим. Выбором оптического пути канала регистрации в пределах от 1 м до 30 м, можно в какой-то степени оптимизировать, нормировать итоговую величину поглощения для разных по силе линий, попадающих в диапазоны спектрального сканирования. Конструкция многопроходной оптической ячейки позволяет однажды выбрать и зафиксировать длины оптических путей индивидуально для каждого физического канала измерений, но никак не изменять их впоследствии. Высокое спектральное разрешение $\lambda/\Delta \lambda \sim 10^7$, присущее методу диодно-лазерной спектроскопии, позволяет

детально регистрировать форму линий молекулярного поглощения, определяемую всей совокупностью физических условий в месте проведения измерений.

Прибор «ИСКРА-В» будет использовать устройство забора и распределения атмосферных проб совместно с прибором «ХМС-П». Отличие подготовки проб для прибора «ИСКРА-В» заключается в необходимости очистки атмосферной пробы от любых твердых или жидких, пылевых, ледяных или аэрозольных частиц. Необходимое разрежение очищенной газовой атмосферной пробы до рабочего давления внутри оптической кюветы около 50 мбар, что совместимо с физическим принципом действия диодно-лазерного спектрометра, будет осуществляться специальным газовым интерфейсом — электронно-регулируемым напускным клапаном, входящим в состав прибора «ИСКРА-В». При этом для каждого цикла спектральных измерений потребуется определение и сохранение коэффициента разрежения, определяющего возможность последующего восстановления истинных забортных концентраций измеряемых газов. Температура газовой пробы равна температуре окружающей среды внутри ПА ~300К.

Для реализации вертикального разрешения на уровне 1 км может быть критичным быстродействие микронасоса, откачивающего оптическую кювету после завершения цикла измерений текущей взятой пробы до момента напуска очередной разреженной атмосферной пробы. Предварительно, можно задать интервал времени 20-30 с для откачивания объема 0,5 л кюветы от начального давления 50 мбар до остаточного давления порядка 0,05 мбар. Если потребуется, учет остаточного содержания газов при смене атмосферной пробы можно обеспечить мониторингом содержания кюветы – непрерывно осуществляемыми спектральными измерениями как для заполненной, так и для откачанной кюветы.

Для опциональных сеансов работы прибора на поверхности Венеры периодичность во времени проведения отдельных измерений может быть увеличена до нескольких минут, что позволит улучшить степень очистки оптической кюветы от газового состава предыдущей измеренной пробы. Желателен непрерывный в целом режим работы прибора «ИСКРА-В» на поверхности Венеры, что позволит получить подробные сведения, как о кратковременных, так и о долгосрочных вариациях содержания атмосферных газов.

173

8.2. О выборе основных молекул и изотопов для измерений в атмосфере Венеры при помощи многоканального диодно-лазерного спектрометра МДЛС – прибора ИСКРА-В. Измерения содержания изотопов как источник информации об эволюции атмосферы планеты.

В Главе 5 отчета о НИР "Венера-Д" 2011 г. (Засова и др., 2011) был рассмотрен предварительный выбор основных молекул и изотопомеров и соответствующих спектральных интервалов для исследования химического состава атмосферы. Здесь мы рассмотрим дополнительные возможные варианты с учетом возможностей современной элементной базы научной аппаратуры.

8.2.1. Диоксид серы SO₂.

Регистрация линий молекулярного поглощения SO₂ возможная в диапазоне 1380 см⁻¹ с применением QCL-лазера, соответственно, диапазона 7,2 мкм. В оптической многопроходной кювете при давлении 50 мб, температуре 300 К и длине оптического пути около 30 м достигается поглощение до 90% (пропускание 0,1) в максимуме линии (Рис. 8.1). Относительное содержание SO₂ в интервале высот от 0 до 65 км может меняться на несколько порядков: от долей ppm (1 ppm = 10^{-6}) до более 100 ppm и на уровне верхнего яруса облаков крайне изменчиво.

Рис. 8.1. Модельные спектры поглощения газовой пробы атмосферы Венеры при давлении p = 50 мб, температуре T = 300 К и длине оптического пути l = 30 м для различных содержаний SO₂. Вверху – интервал с максимальным поглощением SO₂. Внизу – интервал с линиями CO₂ и H₂O.

8.2.2. Угарный газ СО, углекислый газ СО₂, карбонилсульфид ОСS и изотопы¹³C/¹²C в СО и СО₂, ³⁴S/³³S/³²S в ОСS.

Возможна регистрация соответствующих линий молекулярного поглощения в диапазоне 2073-2074 см⁻¹ с применением QCL-лазера диапазона 4,82 мкм. Требуемая длина оптического пути может составить величину до 17 м.

Рис.8.2. Модельный спектр пропускания атмосферной пробы в интервале около 4.82 мкм для длины пути l = 10 м. Содержание CO2 96,5%, CO 30ppm и OCS 10 ppm.

8.2.3. Изотопы углекислого газа CO₂ и водяного пара H₂O.

В диапазоне 2,78 мкм сосредоточено множество линий молекулярного поглощения изотопов, позволяющих измерение соотношений: ${}^{13}C/{}^{12}C$ и ${}^{16}O/{}^{17}O/{}^{18}O$ для CO₂ в диапазоне 2,785 мкм, а также D/H и ${}^{16}O/{}^{17}O/{}^{18}O$ для H₂O около 2,783 мкм. Измерения возможны с использованием одного и того же диодного DFB-лазера, периодически переключаемого между указанными диапазонами изменением рабочей температуры лазерного кристалла.

Рис.8.3. Примеры спектров молекулярного поглощения, рассчитанных научной группой *C.R.Webster et al., JPL, NASA* в диапазоне 2,78 мкм для ряда тестовых газовых смесей CO₂ и H₂O.

8.2.4. Углекислый газ CO₂ и водяной пар H₂O – основные молекулы.

Множество сильных линий молекулярного поглощения CO_2 и H_2O расположены в окрестности диапазона 2,68 мкм. Аналогично, температурное переключение DFB-лазера позволяет попеременно регистрировать отдельные линии CO_2 (3728,4101 см⁻¹) и H_2O (3727,7376 см⁻¹). Сила указанных линий может позволить их регистрацию на сравнительно коротком оптическом пути порядка одного метра.

Производство DFB-лазеров диапазонов 2,68 мкм и 2,78 мкм на основе соединений GaInAsSb/GaAlAsSb серийно освоено компанией Nanoplus, Германия. QCL-лазеры диапазонов 4,82 мкм и 7,2 мкм могут быть изготовлены компанией Alpes Lasers, Швейцария. В целом, QCL-лазеры существенно (в разы) более энергои ресурсоемки, смонтированы в более крупном корпусе излучающего модуля и стоят заметно дороже по сравнению с «обычными» DFB-лазерами ближнего ИК диапазона.

Диапазон 2,682 мкм

Рис.8.4. Примеры спектров молекулярного поглощения сильных основных линий CO₂ и H₂O, регистрируемых диодно-лазерным спектрометром ДЛС/ХМС-1Ф, установленным на борт посадочного аппарата нереализованной миссии «Фобос-Грунт». (G. Durry, I. Vinogradov, O. Korablev, M. Gerasimov, et al, 2010.)

Оказывается возможным компоновка сразу нескольких (от 2-х до 6-ти) лазерных излучателей в единой конструкции, объединяющей блок лазерных излучателей, общую многопроходную оптическую кювету и фотоприемники. Протяженный оптический путь до ~30 м реализуется на основе компактной многопроходной оптической кюветы по известной схеме Эрриотта, при этом возможно задание длины оптического пути зондирующего излучения через газонаполняемый объем кюветы индивидуально для каждой пары лазерный излучатель – фотоприемник. Точный расчет геометрии многопроходных траекторий для каждого зондирующего луча, а также устойчивости оптической схемы в целом представляет собой нетривиальную математическую задачу.

Рис.8.5. Пример конструкции 4-канального диодно-лазерного спектрометра для исследования планетных атмосфер. (Tarsitano and Webster, 2007).

Рис.8.6. Примеры распределения точек отражения лучей, геометрии вводов и выводов на зеркалах и их держателях, а также характерный вид многопроходных траекторий, подсвеченных лазерным излучением видимого диапазона. (Tarsitano and Webster, 2007).

В продолжение работ предстоит продолжить детальный математический анализ и осуществить точные расчеты свойств линий молекулярного поглощения интересующих газов, требований к лазерным излучателям, параметров выбранной оптической схемы регистрации и всей совокупности прочих характеристик разрабатываемого прибора для эффективной реализации эксперимента «ИСКРА-В».
9. УТОЧНЕНИЕ ХАРАКТЕРИСТИК УСТРОЙСТВА ЗАБОРА ГРУНТА И АТМОСФЕРНЫХ ПРОБ, А ТАКЖЕ РАЗРЕЖЕНИЯ АТМОСФЕРНЫХ ПРОБ ДЛЯ МДЛС ПРИБОРА ИСКРА-В

Настоящий раздел связан с уточнением характеристик заборных устройств проб атмосферы и грунта для экспериментов ХМС-ПА и ИСКРА-В. Эксперименты ХМС-ПА и ИСКРА-В направлены на проведение прямых прецизионных измерений химического состава атмосферы Венеры и пород ее поверхности, что является одной из важнейших задач миссии Венера-Д на спускаемом аппарате (ПА). Эксперименты с комплексом ХМС-ПА и прибором ИСКРА-В требуют внешний отбор проб атмосферы и грунта с последующей доставкой внутрь ПА. В данном разделе уточняются требования к системам забора, направленные на реализацию упомянутых экспериментов.

Отбор проб атмосферы

Схематически комплекс ХМС-ПА показан на рис.9.1.

Рис. 9.1 Схема комплекса ХМС-ПА.

В комплексе объединены два основных аналитических прибора – газовый хроматограф и масс-спектрометр. Хроматограф обеспечивает анализ газовых компонентов и выполняет измерения, как атмосферных газовых компонентов, так и аэрозольной составляющей облаков. Аэрозольная компонента должна

накапливаться и переводиться в газовую фазу для анализа. Масс-спектрометр участвует в идентификации газов, последовательно выходящих из хроматографа, и измерении изотопии входящих в газы элементов. Масс-спектрометр также анализирует элементный состав грунта, при испарении части пробы грунта мощным лазерным импульсом. Для отбора пробы атмосферы были сформулированы следующие требования:

1. В отбираемой пробе газа должны отсутствовать пылевая и аэрозольная компоненты.

2. Должна быть обеспечена возможность накопления аэрозольной компоненты на участках спуска в интервале ~2-3 км.

3. Отбор проводится при температуре и давлении, соответствующим месту забора.

4. Отсутствие контаминации пробы атмосферы газами, выделяемыми из ПА.

На рис. 9.2 схематически показано устройство прибора ИСКРА-В. Прибор ИСКРА-В измеряет содержание серусодержащих газов и ряда других газовых составляющих (из ряда: SO₂, CO, COS, H₂O, NO₂, HCl, HF и других), продуваемых через оптическую кювету прибора. Были сформулированы следующие требования к отбору пробы атмосферы для прибора ИСКРА-В:

1. В отбираемой пробе газа должны отсутствовать пылевая и аэрозольная компоненты.

2. Отбор проводится при температуре и давлении, соответствующим месту забора.

3. Отсутствие контаминации пробы атмосферы газами, выделяемыми из ПА.

182

Рис. 9.2. Общая схема прибора ИСКРА-В.

Была предложена следующая общая схема системы газовой пробоподготовки комплекса ХМС-ПА и прибора ИСКРА-В (рис.9.3). Система имеет два попеременно выдвигаемых фильтра для сбора аэрозольной компоненты и заборник газов, очищенных от аэрозоля, для ввода газовых проб для анализа в комплексе ХМС-ПА и приборе ИСКРА-В.

Рис. 9.3. Система газовой пробоподготовки комплекса ХМС-ПА.

Также следует отметить, что для нормальной работы прибора необходимо редуцирование давления в оптической кювете до давления 100-300 мбар. Для комплекса ХМС-ПА давление пробы атмосферы при вводе в комплекс может быть в диапазоне 0,5 – 10 бар.

В связи с этим представляется целесообразным иметь две последовательные ступени редуцирования давления: первая ступень редуцирует давление от забортного до уровня не выше 10 бар для ввода пробы в хроматограф, вторая ступень редуцирует давление газа от уровня первой ступени до уровня 100 – 300 мбар для ввода пробы газа в прибор ИСКРА-В. Редуцирование давления должно быть связано с точным его измерением и контролем, так как в обоих случаях параметр величины давления определяет величину измеряемой концентрации атмосферных компонентов. Для этого ступень редуцирования должна иметь прецизионный измеритель давления и натекатель, работающие по цепи обратной связи.

Были рассмотрены вопросы теплового режима натекания пробы газов. Редуцирование давления предполагает дросселирование газа из атмосферы во внутренний разреженный объем. Это сопровождается охлаждением газа по адиабатическому закону с возможной конденсацией некоторых газовых компонентов, формирующих облачный слой Венеры. Образование аэрозоля особенно неблагоприятно сказывается на работе прибора ИСКРА-В, требующего идеальных оптических условий для спектроскопии. Чтобы не происходило конденсации, желательно подогревать расширяющийся газ и поддерживать его температуру неизменной. При задаче проведения измерений до поверхности требуемые высокие температуры пробы газа не могут поддерживаться из-за конструктивных требований ПА. Компромиссным требованием здесь может быть задача подогрева вводимой пробы до температурр ~150°С, несколько превышающей температуру нижней границы облаков.

Были также рассмотрены вопросы утилизации ввыделяемой внутрь ПА пробы газов. В случае комплекса ХМС-ПА основным выделяемым газом является газ-носитель. При выборе гелия в качестве газа-носителя, он может быть только сжат, что требует установки нагнетающего насоса. Оценочный объем газа-носителя, выделяемого хроматографом за 2 часа спуска и работы на поверхности, составляет ~800 см³ STP. Примерно столько же может быть выделено до начала спуска при подготовке системы. Объем вводимой пробы атмосферных газов в прибор ИСКРА-В при необходимости обновления объема кюветы каждые ~2 км спуска составляет до ~50 л STP.

Рассматривались следующие схемы утилизации газов:

а) установка насоса для откачки отработанных газов за борт ПА;

б) откачка отработанных газов во внутренний ресивер;

в) откачка отработанных газов во внутренний ресивер с поглотителем.

Преимущество варианта а) заключается в его компактности и возможности неограниченного ввода атмосферных газов для анализа. Недостатками являются: необходимость высокой степени сжатия для откачки газов у поверхности, энергетические затраты, повышенное тепловыделение внутри ПА. При этом, если выделяемое при сжатии газа тепло использовать для нагрева вводимой дросселируемой пробы атмосферных газов, тепловыделение в большой степени будет скомпенсировано.

Преимущество варианта б) состоит в том, что не требуется мощного насоса для нагнетания газа в ресивер, экономится энергетика и уменьшается внутреннее тепловыделение. Это достигается при значительном объеме ресивера, когда предельное давление в ресивере составляет несколько бар. Недостатком является дополнительный занимаемый объем и вес устройства. Для обеспечения прибора ИСКРА-В объем ресивера должен быть не менее 10 л, что не приемлемо, если только не использовать весь внутренний объем ПА в качестве ресивера.

Преимущество варианта в) по отношению к варианту б) заключается в значительном уменьшении объема ресивера и, следовательно, веса устройства. Использование поглотителя для CO₂ будет очень эффективным для использования ресивера в случае прибора ИСКРА-В. Его поглощение почти в 30 раз уменьшает объем необходимого ресивера. Ресивер с объемом 1 л может обеспечить утилизацию отработанных атмосферных газов. Такой ресивер с поглощением CO₂ может служить устройством для обогащения атмосферных благородных газов для их анализа на комплексе ХМС-ПА. Поэтому целесообразно иметь газовый ввод из ресивера в комплекс ХМС-ПА. Комплекс ХМС-ПА при этом должен иметь свой отдельный ресивер для сбора газа-носителя.

10. ПРОДОЛЖЕНИЕ ПРОРАБОТКИ ТЕПЛОИЗОЛЯЦИИ ПРИБОРОВ, УСТАНОВЛЕННЫХ НА ПА И РАБОТАЮЩИХ НА ЭТАПЕ СПУСКА В НИЖНЕЙ АТМОСФЕРЕ И НА ПОВЕРХНОСТИ, ПРИ НЕОБХОДИМОСТИ УСТАНОВКИ ИХ ВНЕ ГЕРМООТСЕКА: СТАНЦИЯ НА ПОВЕРХНОСТИ С ВРЕМЕНЕМ ЖИЗНИ 24 ЧАСА.

Учитывая экстремальные условия в нижней атмосфере и на поверхности Венеры проработка теплоизоляции имеет критическое значение как для изоляции приборов или отдельных элементов приборов, так и для жизни всего аппарата в целом. На предыдущих советских Венерах для приборов, установленных внутри, как телефотометры, применялись кварцевые окна, толщина которых доходила до 20 см. Опасность существования окон состояла в возможности их повреждения, при этом пострадала бы вся станция. Наличие большого количества окон ухудшало бы также теплоизоляцию станции. Поэтому на ПА Венера некоторые приборы устанавливались вне гермоотсека с необходимой теплоизоляцией

Была проработана система теплоизоляции, усовершенствованная по сравнению с использованной в советских Венерах. Для приборов из комплекса научной аппаратуры, элементы которых должны быть установлены вне гермоотсека относятся в первую очередь: нефелометр и счетчик частиц, МТДЛаз, сейсмометр.

Теплоизоляция может быть. рассчитана на примере долгоживущей станции на поверхности. Очевидно, что существует прямая зависимость между размером станции и временем жизни ее на поверхности. Была поставлена задача расчета теплоизоляции для станции весом 100 кг, чтобы она могла существовать на поверхности Венеры около 24 часов.

10.1. Посадочный аппарат с временем жизни 24 часа. Новая концепция теплоизоляции.

Проработка теплоизоляции станции подразумевает применение инновационных технологий. Облик долгоживущей станции (ДС) должен качественно отличаться от ПА типа Венера. Станции Венера не были рассчитаны на время существования более 2 часов на поверхности. Покрытые теплоизоляцией снаружи, они достигали критической температуры после пары часов существования на поверхности. После этого наружная теплоизоляция становилась бесполезной. Увеличение времени жизни на поверхности на порядок и более требует кардинального изменения облика станции. К необходимым изменениям относятся следующие:

 Гермокорпус должен непосредственно контактировать с атмосферой и неограниченное время выдерживать термодинамические условия на поверхности (Т = 500^oC, P = 100 бар).

2. Изнутри корпус должен быть изолирован двумя слоями теплоизоляции:

а) слоем высокотемпературной теплоизоляции, защищающей от тепловой радиации примыкающей к корпусу атмосферы

б) слоем низкотемпературной теплоизоляции.

3. Тепло, проникающее через теплоизоляцию должно эффективно поглощатся с помощью PhaseChange материала при температуре около 50°C, допустимой для электроники

Все эти элементы по отдельности известны, но их количественная комбинация иная, чем для станций-лендеров, чья задача-продержаться на поверхности пару часов. Для ДС массовая доля системы теплозащиты значительно выше.

10.2. Расчет ДС

Были произведены расчеты ДС, построенной по этому принципу. Были приняты следующие параметры:

- Вес равен 100 кг.

- Внешний диаметр сферического гермокорпуса из титана 0.6 метра

- Ядро в центре диаметром около 30 см

- Ядро защищено слоем 13 см высокоэффективной теплоизоляции на основе микросфер теплопроводностью 0.016 вт/м К.

Ядро содержит 20 кг теплопоглотителя на фазовом переходе, удерживающего температуру на уровне 50 С. Спуск в атмосфере должен соответствовать аппаратам серии Венера. Выделение тепла аппаратурой ограничено 3 Вт. Расчеты в системе Симулинк показали работоспособность такой ДС в течение 27 часов, из них 26 часов на поверхности.

Конструктивный облик долгоживущей станции на поверхности Венеры приведен на рисунке 10.1.

188

Рис. 10.1. Конструктивный облик долгоживущей станции на поверхности Венеры.

Расчетная схема в системе Симулинк приведена на рис. 10.2. Она отражает основные тепловые процессы при спуске в атмосфере Венеры и при нахождении станции на ее поверхности.

Для вычисления температуры за бортом в схему заложена модель атмосферы Венеры (группа блоков в верхнем левом углу схемы). Она используется на спуске, так что зависимость высоты от времени спуска задается аналогично тому, который использовался для станций типа Венера. Температура за бортом в зависимости от времени спуска определяется модельным профилем (Puc.10.3).

Рис. 10.2. Расчетная схема теплового режима долгоживущей станции на поверхности Венеры.

Рис.10.3. Температура за бортом в зависимости от времени спуска. По оси абсцисс - время в секундах, по оси ординат - температура в градусах Кельвина.

Температура гермокорпуса полагается равной температуре за бортом. При отсутствии внешней теплоизоляции это предположение близко к реальности на поверхности Венеры, а при спуске снижает оценку времени жизни долгоживущей станции, т.е. реальное время будет больше расчетного. Процесс теплопередачи от гермокорпуса к ядру через слой внутренней теплоизоляции описывается интегрированием уравнения теплопроводности (группа блоков в центре схемы рис.10. 2). Скорость роста температуры ядра до достижения температуры плавления при наличии теплопоглотителя в ядре определяется его теплоемкостью, после достижения температуры плавления температуры плавления.

Тепловой поток к ядру интегрируется по времени(группа блоков в правом верхнем углу), и результат сравнивается с суммарным тепловым эффектом фазового перехода. Время жизни определяется способностью теплопоглотителя поглотить приходящее к ядру тепло за счет фазового перехода и тем самым удержать температуру при температуре плавления.

В дальнейшем схема будет детализирована с учетом более подробной конструктивной проработки после выбора направления развития, в том числе научной нагрузки.

Рис.10.4. Температура ядра долгоживущей станции на поверхности Венеры в зависимости от времени.

10.3. Конструкция ДС

Более подробно опишем конструкцию ДС. Гермокорпус из титана диаметром 60 см отделяет внутреннюю часть ДС от атмосферы. Внутри поддерживается низкое давление газа, порядка 0.1 атм, чтобы уменьшить влияние конвекции на теплопередачу. С этой же целью газом заполнения выбран инертный газ ксенон. Теплоизоляционный материал, примыкающий к стенкам гермокорпуса, должен выдерживать температуру 500°C. Т.е. он должен быть неорганическим,

минеральным . Наиболее подходит засыпка из стеклянных микросфер, помещенных в контейнеры из металлической фольги. Внутреннее ядро ДС подвешено на проволочных растяжках, внешний конец которых закреплен на гермокорпусе. Такая конструкция минимизирует передачу тепла от гермокорпуса к внутреннему ядру.

Внутреннее ядро диаметром 34 см содержит 20 кг теплопоглотителя на фазовом переходе. Плавление теплопоглотителя $Na(CH_3COO)*3H_2O$ с около 50°C. Такая сравнительно высокая поглощением тепла происходит температура плавления выбрана потому, что в момент входа ДС в атмосферу теплопоглотитель должен быть в твердой фазе, т.е. при температуре не выше точки плавления. Чем выше эта температура, тем легче гарантировать нормальное «захолаживание» ДС во время перелета перед входом в атмосферу. При расчете начальная температура была принятой 20°C, однако любая температура менее температуры плавления мало влияет на конечный результат, т.к. вклад теплоемкости поглощение тепла невелик. Изменение температуры ядра от времени имеет В короткий, около 2 часов, участок нагрева с 20°С до 50°С,после чего температура стабилизируется на уровне 50° C за счет фазового перехода. Температура 50° C считается приемлемой для электроники научной аппаратуры. Структура ядра должна обеспечивать эффективный отвод тепла от аппаратуры к теплопоглотителю, для чего аппаратура должна находиться на металлической структуре⁰ типа рамы из бериллия.

10.4. Заключение

При описанной конструкции достигнутым результатом является долгоживущая станция с временем жизни на поверхности 24 часа. Это предел для технологии, использующей традиционные материалы и аппаратуру на основе кремниевой электроники. Дальнейшее увеличение времени жизни ДС на поверхности лежит либо на пути использования высокотемпературной электроники на основе SiC или GaN или GaAs, либо на революционном пути использования высокотемпературной экранно-вакуумной теплоизоляции и высокоэффективных поглотителей, работающих с использованием высокого теплового эффекта испарения жидкости, например, воды, либо использования активной теплозащитыхолодильных агрегатов.

193

11. ПРОРАБОТКА ТЕХНИЧЕСКОГО ПРЕДЛОЖЕНИЯ НА ИЗГОТОВЛЕНИЕ КВД. ПРОЕКТ ТЗ НА ИЗГОТОВЛЕНИЕ КВД ДЛЯ ИСПЫТАНИЯ ПРИБОРОВ И ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ ПРИ ТЕМПЕРАТУРАХ И ДАВЛЕНИИ В АТМОСФЕРЕ ВЕНЕРЫ И НА ЕЕ ПОВЕРХНОСТИ

11.1 Стенд для испытания научных приборов в условиях атмосферы планеты Венера. Техническое предложение

11.1.1 Назначение стенда

В 1985 г. состоялось последнее посещение Венеры советским космическим аппаратом ВЕГА, когда в атмосферу и на поверхность этой планеты были доставлены научные приборы. В последующие годы (с 2006 г. по н. вр.) производилось только Венеры с европейского орбитального космического дистанционное исследование аппарата Venus-Express и в настоящее время ведутся также исследования с японского аппарата Akatsuki, который хоть и не вышел на орбиту вокруг Венеры, но движется по орбите вокруг Солнца на расстоянии от Венеры, с которого доступны ее наблюдения. Как это часто бывает в науке, наряду с получением и осмыслением новых данных об объекте исследования возникают новые вопросы. Интерес к проблемам Венеры со временем продолжал возрастать. В последние годы появилась возможность продолжить исследования Венеры с помощью спускаемого аппарата, что отразилось в создании программы «Венера-Д», ключевым пунктом которой является исследование атмосферы и поверхности in situ. Следует напомнить, что условия на поверхности Венеры весьма суровые по сравнению с земными: температура до 500° Ц и давление до 100 бар. Пока ещё сохранился опыт создания приборов, работавших при этих условиях в экспериментах от «Венера-7» до «ВЕГА», однако уже не сохранились установки, в которых проходили испытания и проверки указанные приборы. Разработку приборов следует начинать, будучи уверенным, что имеется оборудование, на котором можно будет отрабатывать и испытывать не только сами приборы, но и их отдельные узлы: корпуса, окна, электрические вводы, элементы теплоизоляции. Это приводит к необходимости создания специализированного стенда, на котором в рабочем объёме, достаточном для размещения отдельных приборов, будут создаваться условия, соответствующие спуску в атмосфере посадочного аппарата и его работе на поверхности.

11.1.2. Основные требования к стенду

Полностью требования к стенду изложены в проекте Технического задания. Ниже перечислены основные из них:

1. Рабочий объём 15 литров. Диаметр 250 мм, высота 330 мм.

2. Температура в рабочем объёме от 25° Ц до 500° Ц.

3. Давление от 1 бар до 100 бар.

4. Газ в рабочем объёме – или углекислота, или азот (в зависимости от программы испытаний).

5. Продолжительность процесса испытания до нескольких суток.

Параметры газа должны программно изменяться, имитируя или спуск через атмосферу на поверхность, или длительное нахождение на поверхности. Должна иметься возможность управлять работой испытуемого устройства или прибора в процессе испытания и регистрировать технологические параметры и выходную информацию прибора.

11.1.3. Состав стенда

Основным элементом стенда является камера высокого давления (КВД) со встроенными нагревателями. Нагреватели располагаются вокруг прибора, а от стенок КВД они отделены слоем теплоизоляции, что исключает чрезмерный нагрев самой камеры. Ток через нагреватели автоматически регулируется тек, чтобы обеспечить требуемый график нагрева газа. Заполнение камеры газом происходит за счёт давления в баллонах с азотом. Если испытание не предполагает использовать углекислоту, то азот из баллона, исходное давление в котором равно 150 бар, подаётся непосредственно в КВД, постепенно повышая в ней давление по заданной программе. Если испытания планируется проводить в углекислом газе, то азот подаётся в баллон с углекислотой, вытесняя жидкую углекислоту в КВД, где, нагреваясь, углекислота превращается в газ. Исходно в углекислотном баллоне при комнатной температуре углекислота находится в жидкой фазе давлении около 70 бар вне зависимости от количества жидкой фазы. При при температуре выше 33°Ц углекислота ни при каком давлении не превращается в жидкость. Температура и давление в КВД измеряется элементами системы автоматического управления КВД.

Схематически стенд изображён на рис. 11.1.

Рис.11.1 Схематическое изображение стенда

Для выполнения правил техники безопасности стенд должен размещаться в отдельном помещении, отвечающем требованиям документа «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением» ПБ 03-576-03. Управление испытаниями должно производиться из изолированного от стенда помещения (пультовой).

11.1.4. Отдельные системы стенда

11.1.4.1. Камера высокого давления (КВД)

Предварительный чертёж КВД приведён на рис. 11.2.

Окончательная конфигурация и размеры камеры должны быть определены при конструкторской разработке. Камера состоит из двух основных элементов – корпуса и крышки, соединённых по фланцу.

Корпус имеет на боковой поверхности приливы, на которых изнутри расположены три гермопроходника. Один служит для передачи тока к нагревателям. Для равномерного нагрева рабочего объёма будет использоваться 3 нагревателя с суммарным током потребления до 50 А. Второй служит для передачи диагностической информации и управления прибором и имеет 24 линии. Третий используется для связи с прибором и также имеет 24 линии. Предполагается использовать гермопроходники типа ОС2РМ27 БПН24Ш1А1. Такие же гермопроходники использовались на всех спускаемых аппаратах, начиная с миссии «Венера 9» и продемонстрировали высокую надёжность в условиях длительного (свыше 2-х часов) работы на поверхности Венеры.

На боковой поверхности установлен штуцер с резьбой M12x1,5 для заполнения камеры газом.

Рис.11.2. Предварительный чертеж КВД

Крышка соединяется с корпусом через кольцевое уплотнение типа нож-канавка с медной прокладкой с помощью 12 болтов M18x2. На внешней поверхности крышки установлены 3 рым-болта для её подъёма и переноски.

Для защиты корпуса КВД и, в частности, гермопроходников от нагрева, внутренняя поверхность корпуса и крышки закрыта слоем теплоизоляции толщиной 50 мм. В качестве теплоизолирующего материала выбран материал КСБ, состоящий из кремнезёмных

волокон, соединённых каолином. Этот материал использовался на спускаемых аппаратах серии «Венера» в качестве наружной теплоизоляции. Так как КСБ материал пористый, то для подавления конвективного теплообмена теплозащита составлена из отдельных колец высотой 50 мм, разделённых газонепроницаемой фольгой из нержавеющей стали. При коэффициенте теплопроводности КСБ равном (0,12...0,18) Вт/м²К, температуре газа 500° Ц и допустимой температуре стенок камеры 75° Ц тепловой поток от КВД не превысит 700 Вт. Такой поток будет отводиться от свободно стоящей КВД за счёт естественной конвекции. Если же КВД будет помещена в ограниченный объём (в защитный колодец), то потребуется принудительный обдув камеры.

Особое внимание следует уделить теплозащите гермопроходников и разъёмов, соединённых с ними внутри камеры. Футеровать зоны разъёмов следует заново после каждой установки прибора.

11.1.4.2. Система заполнения газом.

Для заполнения КВД используются стандартные 40-литровые баллоны ГОСТ 949-73, рассчитанные на рабочее давление 150 атм. при комнатной температуре, заполненные азотом газообразным особой чистоты (99,999%) ГОСТ 9293-74 и углекислотой, высший сорт (99,8%) ГОСТ 8050-85. Одного баллона с азотом и одного баллона с углекислотой достаточно для двукратного заполнения КВД, т. е. проведения двух испытаний. К сожалению, после того, как давление в азотном баллоне снизится до 100 бар, он становится непригодным для дальнейших испытаний.

Пневматическая и электрическая схема стенда изображена на рис.11.3

Рис. 11.3. Электрическая схема стенда

Н1,Н2,Н3-нагреватели , ТП1,ТП2,ТП3-термопары, К1,К2,К3-управляющие контроллеры, ТР1, ТР2, ТР3 – трансформаторы, РП1,РП2,РП3-реле питания, Б1,Б2-газовые баллоны, М1-манометр, , Р1, Р2-разъемы

Внутри КВД имеются три нагревателя Н1, Н2, Н3 мощностью по 5 кВт для контроля температур трех частей испытуемого прибора. Их питание осуществляется через три независимых трансформатора 220/ 20 V ТР1, ТР2, ТР3, управление которыми осуществляется тремя программируемыми контроллерами K1.K2.K3 через бесконтактные реле РП1,РП2,РП3 Контроллеры программируются от персонального компьютера через USB-RS-485 - интерфейсы .Газовый баллон Б1 40 литров 150/225 содержит 24 кг жидкой сварочной углекислоты ГОСТ 8050-77, укреплен вентилем вниз. Баллон Б2 содержит азот 99,999% или аргон 99,993% при давлении 150 ата для наддува баллона Б1. Управление наддувом ведется через электроклапаны ЭК-1, ЭК-2, сброс давления через электроклапан ЭКЗ. Измерение давления ведется манометром или датчиком давления М1.

11.1.4.3. Система нагрева

Нагревательные элементы изготавливаются из сетки проволочной тканной с квадратными ячейками ГОСТ 3826-82 группа 2. Размер ячейки в свете 2,5 мм, проволока 12X18H10T диаметром 0,4 мм. Нагревательные элементы имеет прямоугольную форму, рис.11. 4.

Рис.11.Нагревательные элементы

С противоположных сторон к сетке припоем ПСр70 припаяны контактные планки, выполненные из нержавеющей стали 12Х18Н10Т и проводники, идущие к гермопроходникам. Как видно из рис.11.4, каждый нагреватель разделён на секции, соединённые последовательно. Это сделано для увеличения сопротивления нагревателя и, соответственно, уменьшения потребляемого тока.

11.1.4.4. Система диагностики стенда

Для управления процессом газонаполнения и нагрева, а так же для контроля состояния оборудования предусмотрено измерение и регистрация во время испытания следующих параметров:

1. давление в баллоне с углекислотой;

- 2. давление в баллоне с азотом;
- 3. давление в магистрали;
- 4. давление в КВД;
- 5. состояние клапана сброса давления;
- 6. состояние клапана отсечки магистрали;

- 7. ток нагревателя №1;
- 8. ток нагревателя №2;
- 9. ток нагревателя №3;
- 10. температура стенки КВД;
- 11. температура крышки КВД;
- 12. температура гермопроходника№1;
- 13. температура гермопроходника№2;
- 14. температура гермопроходника№3;
- 15. температура газа в КВД под крышкой;
- 16. температура газа в КВД внизу рабочего объёма;
- 15. температура газа в КВД в середине стенки рабочего объёма;
- Измерение давления производится с помощью измерителя давления....

Температуры измеряются с помощью термопар хромель-алюмель и выводятся на экран PC.

11.1.5. Компоновка стенда

Фактически стенд состоит из двух частей: собственно стенд с расположенными в нём камерой, системами газонаполнения и нагрева, и пультовой, где происходит регистрация диагностических параметров стенда, управление процессом испытания, управление испытуемом прибором и регистрация его информации.

Были рассмотрены два варианта размещения стенда. На рис.11.5 представлена планировка стенда и пультовой при размещении в строении №6 (бывшая азотная станция).

Рис. 11.5. Планировка стенда и пультовой при размещении в строении №6 (бывшая азотная станция).

Обширное помещение с высоким потолком позволяет выгородить для стенда угловой отсек размером 3х3 м². КВД помещается в имеющийся бетонированное углубление в полу так, что из него выступает верхняя часть камеры с разъёмами и штуцером. Над КВД, опираясь на пол, стоит подъёмник для подъёма крышки на высоту около 1 м, достаточную для установки прибора в камеру. Баллоны с азотом размещаются снаружи корпуса №6 в месте, удобном для подвоза баллонов. Одновременно к магистрали подключены два баллона, остальные считаются резервными. Там же хранятся запасные баллоны с углекислотой. Вдоль стены внутри стенда установлен стеллаж, на котором смонтированы держатели для двух баллонов с углекислотой и механизмы управления пневмосистемой – датчики давления, клапана и вентили. Баллоны с углекислотой должны быть установлены в держателях в перевёрнутом состоянии, для того, чтобы в КВД углекислота поступала в жидком виде. В этом же отсеке установлены преобразователь напряжения и регуляторы тока нагревателей.

На расстоянии 4...5 метров от стендового отсека оборудуется пультовая. Размер отсека $4x3 \text{ м}^2$. Стены обоих отсеков, направленные друг к другу, должны быть кирпичными для защиты от возможного поражения осколками. Пультовая, в отличие от стенда, имеет крышу на высоте 2,7 м.

В пультовой установлен PC, в который введена программа управления стендом. Перед испытаниями вводятся в программу исходные данные, а в процессе испытаний на экране отражается графически реальный ход измеряемых параметров и заданный о программе.

Управление прибором осуществляется с помощью штатного КИА данного прибора, также установленного в пультовой.

Второй вариант размещения стенда предполагает возведение отдельного строения на пустыре в 50 м к югу от строения №10; в последнем разместить пультовую, отгородив там требуемый объём. Планировка каждого отсека аналогична показанной на рис.11.5.

11.1.6. Заключение

В процессе работы над настоящим Техническим предложением удалось создать облик Стенда для испытаний научных приборов в условиях атмосферы Венеры. Большинство конструктивных и схемных решений обоснованы в данной работе, некоторые требуют для своего обоснования проведения проектных и экспериментальных работ.

11.2. Проект ТЗ на разработку стенда для испытаний приборов,

предназначенных для работы в атмосфере и на поверхности планеты Венера для испытаний приборов

Целью работы является разработка, изготовление и испытания стенда для испытаний приборов, предназначенных для работы в атмосфере и на поверхности планеты Венера. Шифр аппаратуры – КВД.

В результате изготовления стенда должно быть создано оборудование, позволяющее проводить испытания приборов и их отдельных узлов в условиях, имитирующих атмосферу Венеры.

11.2.1. Технические требования

11.2.1.1 Состав аппаратуры

Оборудование стенда должно включать в себя

- камеру высокого давления (в дальнейшем по тексту «КВД»);
- систему заполнения камеры газом;

- нагреватель и источник питания нагревателя;

- систему управления и диагностики оборудования;

- вспомогательное оборудование стенда.

Всё оборудование должно размещаться в отдельном помещении.

11.2.1.2 Требования по назначению

Общие требования:

Оборудование стенда должно обеспечивать изменение давления и температуры в КВД как автоматически по заранее введённой программе, так и вручную.

КВД должна заполняться двуокисью углерода. Допускается наличие примеси азота (содержание азота в смеси не более 20%).

Максимальная температура в рабочей области КВД не должна быть менее 500° С.

Максимальное давление в КВД при максимальной температуре не должно быть менее 100 бар.

Оборудование стенда должно обеспечивать измерение и автоматическую регистрацию давления и температуры в КВД.

Должна быть предусмотрена возможность обеспечения работы испытуемых приборов в КВД при использовании штатных пультов управления этими приборами.

Максимальное время непрерывных испытаний при максимальных температуре и давлении должно быть не менее 30 суток.

Технические требования к КВД.

Рабочий отсек камеры должен иметь размеры, не менее:

-диаметр 250 мм, высота 330 мм.

Камера должна иметь не менее двух герморазъёмов, в которых должно быть не менее 24 технологических линий для питания нагревателей и датчиков температуры, и не менее 24 линий для испытуемых приборов.

Рабочий отсек камеры с нагревателями должен быть отделён от стенок камеры слоем теплоизоляции, такой, чтобы температура стенок в процессе испытаний не превышала 80° С.

Установка камеры должна обеспечивать теплосъём 5 кВт с внешней поверхности при температуре стенок 80° С.

Камера должна быть оснащена не менее, чем тремя датчиками температуры газа в рабочем отсеке и не менее, чем тремя датчиками температуры на стенках и крышке камеры.

Система заполнения камеры газом должна быть оснащена предохранительным клапаном, рассчитанным на давление 100 бар.

Выбор типа теплоизоляции и способа теплосъёма должен способствовать уменьшению объёма КВД.

Технические требования к системе заполнения камеры.

Система должна обеспечивать подачу в КВД жидкой двуокиси углерода из баллона под воздействием давления в баллоне. Для поддержания необходимого давления необходимо использовать наддув азотом из баллона, давление в котором превышает требуемое давление в КВД.

Должна иметься возможность плавно изменять подачу газа в КВД.

Должна иметься возможность в процессе испытания заменять опорожнённые баллоны новыми без остановки испытаний.

Должна иметься возможность сброса давления из камеры.

Должна иметься возможность сброса давления из системы трубопроводов.

Для регулирования расхода газа должны использоваться только вентили с дистанционным управлением.

Должно измеряться давление в КВД, в системе трубопроводов и в баллонах, подсоединённых к системе.

Для измерения давления должны использоваться электрические датчики давления.

Технические требования к системе нагрева приборов.

Система нагрева должна состоять из двух частей: нагревателя и источника питания.

Нагреватель должен состоять из одной или нескольких панелей, которые должны примыкать ко всем основным поверхностям испытуемого прибора, включая его узлы крепления к СА. Размеры панелей и их число должны соответствовать размерам и форме каждого испытуемого прибора.

Максимальная мощность нагревателя должна быть не менее 5 кВт.

Максимальная допустимая температура нагревателя должна быть не менее 1000 К. Каждая панель нагревателя должны питаться независимым источником питания.

Источник питания должен работать от сети переменного тока с напряжением 220±20 В.

Выходное напряжение должно изменяться или вручную, или по сигналам системы автоматического управления.

Напряжение на нагревателе и ток через него должны выводиться на показывающие приборы и регистрироваться системой диагностики.

Требования к системе управления и диагностики

Система управления и диагностики должна быть реализована на основе персонального компьютера и контроллеров - электронных узлов, содержащих аналогоцифровые преобразователи для согласования с датчиками системы, и цифро-аналоговые преобразователи для управления исполнительными механизмами.

Рабочее место должно быть оформлено как пульт управления стендом.

Управление исполнительными механизмами (вентили и нагреватель) должно производиться по программе, введённой в персональный компьютер, обеспечивающей изменение температуры и давления в КВД, соответствующее предварительно введённым зависимостям.

В рабочем режиме система должна вводить в персональный компьютер диагностическую информацию, обеспечивающую полную проверку состояния оборудования и оценку его работоспособности. Диагностическая информация должна включать в себя сведения:

- о температуре и давлении в КВД;

- о температуре корпуса и крышки КВД;

- о давлении в баллонах и газовых магистралях;

- о токе и напряжении на нагревателе.

Опрос датчиков должен производиться с периодом, не превышающим 5 с.

Система должна выдавать сигнал опасности при превышении заданного уровня давления в КВД, температуры стенок КВД и при снижении давления в баллонах ниже заданного уровня.

В процессе испытаний диагностическая информация должна графически изображаться на экране персонального компьютера.

206

Требования к вспомогательному оборудованию стенда.

Электроснабжение должно обеспечивать потребление по сети 220 В не менее 10 кВт на питание нагревателей, измерительной и служебной аппаратуры и освещение стенда.

Вентиляционная система стенда должна обеспечивать воздухообмен со скоростью не менее 1000 м³/час.

Температурный режим в помещении должен поддерживаться в течение рабочего времени в пределах (+15±5)° С.

Помещение должно иметь подвод холодной и горячей воды и соответствующий слив.

В помещении должен быть установлен городской телефон.

Средства пожаротушения должны включать два углекислотных огнетушителя.

На стенде должны иметься приборы для проверки работоспособности стенда и комплект инструментов для ремонта и проведения необходимых операций в процессе испытаний. В частности, для манипуляций с крышкой КВД необходимо иметь соответствующее подъёмное приспособление.

Требования к помещению стенда.

Стенд должен располагаться в изолированном помещении, в котором во время испытаний исключено нахождение людей, кроме участвующих в испытании.

Помещение стенда должно быть разделено, по крайней мере, на два отсека: отсек, где расположена КВД, и отсек, где расположены пульт управления КВД, КИА испытуемого прибора, баллоны, в том числе, запасные, и вторичный источник питания.

Оба отсека должны быть разделены капитальной стенкой.

Объём отсеков должен быть достаточным, для размещения персонала, принимающего участие в испытаниях.

11.2.1.3. Требования по безопасности

Стенд должен соответствовать требованиям по безопасности в соответствии с Правилами устройства и безопасности эксплуатации сосудов, работающих под давлением ПБ 03-576-03.

Конструкция стенда должна обеспечивать простоту и безопасность испытаний, сборочно-разборочных и монтажных работ, а также других работ во время транспортировки компонент стенда и при техническом обслуживании. В эксплуатационной документации должны быть перечислены меры, исключающие поражение персонала при работе электрическим током, углекислым газом.

11.2.1.4. Требования к конструкторской и технологической документации.

Конструкторская, технологическая и программная документация, создаваемая в процессе работы, должна быть выполнена по требованиям ЕСКД и соответствовать следующему перечню:

1) Схема помещений стенда с расположением оборудования

- 2) Руководство по эксплуатации
- 3) Чертеж общего вида КВД
- 4) Комплект чертежей на механические элементы, включая сборочные чертежи.
- 5) Схема пневматическая.
- 6) Схема электрическая соединений.
- 7) Схема электрическая принципиальная вторичного источника питания.

8) Схемы кабельной сети.

9) Алгоритм работы при испытаниях.

10) Программа наземной экспериментальной отработки

11.2.1.5. Требования по надёжности.

Вероятность безотказной работы прибора за срок службы должна быть определена расчетами с учётом результатов испытаний оборудования стенда.

11.2.1.6. Требования по эргономике и технической эстетике

Компоновка стенда должна обеспечивать удобство его монтажа и наладки.

Компоновка стенда и конструкция элементов оборудования должна отвечать требованиям композиционной целостности, информационной выразительности и рациональности формы.

Должен иметься свободный доступ к КВД и газовым баллонам.

Номенклатура крепёжных изделий должна быть по возможности минимальной.

В конструкции стенда не должны использоваться материалы, представляющие опасность при контакте с ними, в частности не должны использоваться детали, содержащие асбест или нерегулярные стекловолокна.

11.2.1.7. Требования по эксплуатации, удобству технического обслуживания, ремонту и хранению

Стенд должен быть ремонтопригодным. В случае обнаружения дефекта надлежит заменить неисправный элемент или узел на исправный и провести, при необходимости, дополнительную проверку.

Компоновка стенда и конструкция элементов должна обеспечивать его сохранность после срока хранения не менее 5 лет в отапливаемых помещениях при следующих условиях:

- температура окружающей среды от 5 до 35° С:

- относительная влажность окружающей среды до 80% при температуре 20° С;

- атмосферное давление от 700 до 800 мм рт. ст. (от 933 до 1067 кПа).

Антикоррозионные покрытия должны обеспечивать надежность защиты деталей стенда от воздействия климатических факторов окружающей среды.

Снимаемые детали (крышки и технологические заглушки) должны быть окрашены в красный цвет.

На корпусах электрических блоков должны быть предусмотрены клеммы металлизации.

Работающий персонал должен иметь допуск к работе с сосудами высокого давления.

Ключи разъемов должны быть ориентированы в одну сторону. Маркировка разъемов должна выполняться со стороны ключей.

Конструкция прибора должна обеспечивать свободный доступ к соединителям.

11.2.2. Технико-экономические требования

При разработке стенда должен быть учтен опыт предыдущих разработок. Оборудование должно разрабатываться на базе новых технологических решений с целью создания стенда с расширенными функциональными возможностями.

При выборе электрорадиоизделий и материалов должны учитываться возможности повышения надёжности разработки и изготовления.

11.2.3. Требования по видам обеспечения

Требования по контролепригодности и метрологическому обеспечению.

Стенд должен быть пригодным для проведения входного контроля с помощью стандартной контрольно-измерительной аппаратуры при участии представителей отдела надёжности.

Требования по программному обеспечению.

Алгоритмы работы встроенных систем прибора должны быть полностью отражены в Техническом описании прибора.

Должна иметься возможность замены или исправления программного обеспечения.

11.2.4. Этапы выполнения работы

N⁰	Наименование этапа,	Сроки	
п/п	содержание работ	выполнения	ОТЧЕТНОСТЬ
1	Обоснование основных	июнь 2012	Отчёт по обоснованию
	технических решений на стенд и		основных технических
	разработка предварительного		решений.
	проекта.		
2	Составление и согласование ТЗ на	сентябрь 2012	Акт о создании ТЗ.
	строительство помещения для		
	стенда		
3	Разпаботка КЛ на нагреватель и	лекабрь 2012	Ακτ ο ραзραδοτκε Κ Π
5	систему заполнения камеры	декаорь 2012	
4	Разработка КЛ на ремонтно-	март 2013	Акт о разработке КЛ на
	строительные работы по созланию	Map1 2015	ремонтно-строительные
	помешения лля стенла		работы
	Изготовление и испытание		Акт об изготовлении
	нагревателей.		нагревателей.
	Согласование ТЗ на изготовление		Акт о согласовании ТЗ на
	КВД.		КВД.
5	Закупка оборудования для	июнь 2013	Акт о закупке оборудования.
	помещения, системы нагревателей		Акт о разработке
	и пневмосистемы.		программного обеспечения.
6	Завершение ремонтно-	сентябрь 2013	Акт о завершении ремонтно-
	строительных работ и монтажа		строительных работ.
	системы питания нагревателей.		Акт о завершении монтажа
	Согласование КД на КВД.		системы нагревателей.
	Разработка программы управления		Акт о приёмке КД на КВД.
	стендом и регистрации данных.		Акт о завершении разработки
			программ управления.
7	Прокладка коммуникаций и	декабрь 2013	Акт о завершении
	установка оборудования стенда.		оборудования стенда.
8	Установка КВД и испытания	июнь 2014	Акт о сдаче стенда в
	стенда.		эксплуатацию.

ЗАКЛЮЧЕНИЕ

Изучение Венеры как планеты Земной группы представляет фундаментальный интерес с точки зрения сравнительной планетологии. Венера – ближайшая к нам планетасоседка в Солнечной системы, планета-сестра по многим параметрам, но разительно отличающаяся от Земли по физическим свойствам поверхности и атмосферы. Необходимо выяснить причину, почему, сформировавшись при близких условиях в протопланетном диске, две планеты так сильно разошлись в процессе эволюции. Изучение атмосферы Венеры имеет прямое отношение к проблеме устойчивости глобального климата. Не приведет ли глобальное потепление, по-видимому, происходящее на Земле, к катастрофическим последствиям, не может ли пойти эволюция земного климата по венерианскому пути, не является ли существование Венеры предупреждением землянам?

В результате выполнения НИР «Венера-Д» проработан проект для комплексного исследования Венеры с посадочного аппарата, орбитального аппарата и субспутника.

• Проработан состав миссии, состоящей из ПА, ОА и СС. Два спутника на орбите вокруг другой планеты будут работать впервые.

• На всех элементах миссии установлен современный комплекс НА, который позволит решить фундаментальные задачи, недоступные для решения ранее: либо не было приборов, либо точность была недостаточной. Научные задачи нацелены на выяснение особенностей происхождения и эволюции Венеры и условий на ее поверхности (500°C и 100 атм. давления CO₂), а также причин отличия от земных.

• Уточнена программа работы экспериментов на ОА и СС и циклограмма работы экспериментов ПА на спуске и на поверхности.

• Произведен баллистический анализ миссии, рассчитаны и проанализированы энергетические характеристики окон старта 2018–2026 год.

•Для оптимальных условий старта вычислены области баллистической достижимости на поверхности Венеры; выбраны места посадки, оптимальные с точки зрения достижимости их ПА в соответствующие окна старта. Оптимальными являются даты запуска 2018 и 2023 годы одновременно по характеристической скорости и баллистической достижимости тессерной местности и 2020 год — лучший с точки зрения баллистической достижимости тессерной местности. В окнах старта 2021 и 2024 предварительные расчеты показывают, что баллистическая достижимость тессерной местности низкая.

211

• Аккуратные измерения летучих и инертных газов и их изотопов позволяют выяснить происхождение и эволюцию атмосферы Венеры.

• Исследование поверхности, ее элементного состава, радиоактивных элементов, геологических и минералогических особенностей дают ключ к пониманию эволюции планеты.

• Измерение степени окисления железа поможет ответить на фундаментальный вопрос: куда ушла вода из атмосферы, в результате чего возник гигантский парниковый эффект, и не находится ли достаточное количество воды в минералах.

• Проработана циклограмма работы экспериментов, установленных на посадочном аппарате во время спуска в атмосфере и на поверхности, рассчитанная на 3 часа времени жизни посадочного аппарата.

• Дополнен набор молекул и соответствующих спектральных интервалов и с учетом современной элементной базы для исследования многоканальным диодно-лазерным спектрометром ИСКРА-В.

• Продолжена проработка систем забора атмосферных проб и грунта и разрежения атмосферных проб, необходимых для исследования хроматографом ХМС-ПА и многоканальным диодно-лазерным спектрометром ИСКРА-В.

• Рассчитаны возможные орбиты субспутника с периодом 12, 24 и 48 часов.

•Проработаны требования к радиолиниям для осуществления радиопросвечивания атмосферы, ионосферы и бистатической радиолокации поверхности. Обоснована необходимость разработки универсального трехчастотного (L, S, X) бортового приемника и установки на борту ОА и СС для радиопросвечивания с помощью излучения мощных когерентных сигналов наземным передатчиком и прием на борту ОА и СС. При этом увеличивается на порядок мощность сигнала и расширяется круг задач радиопросвечивания, включая нижнюю атмосферу и поверхность.

• Уточнены принципы информационного обмена между элементами миссии.

• Проработана теплоизоляция и конструкции долгоживущей станции на поверхности. Показано, что для технологии, использующей традиционные материалы и аппаратуру на основе кремниевой электроники, предельным временем жизни станции массой 100 кг на поверхности является 24 часа. Дальнейшее увеличение времени жизни ДС на поверхности лежит либо на пути использования высокотемпературной SiC электроники на основе или GaN GaAs. либо использования ИЛИ высокотемпературной экранно-вакуумной теплоизоляции и высокоэффективых

поглотителей, работающих с использованием высокого теплового эффекта испарения жидкости (например, воды), либо использования активной теплозащиты — холодильных агрегатов.

•Подготовлено ТЗ на изготовление стенда для испытаний приборов и теплоизоляции в условиях на поверхности Венеры и техническое описание камеры высокого давления (КВД).

Проект «Венера-Д» имеет высокую научную ценность, современные приборы, большинство из которых являются международными и предложены ведущими мировыми коллективами. Приборы будут изготавливаться частично в России, под руководством российских ученых, частично — за рубежом. Приоритетными являются измерения на посадочном аппарате (последняя посадка аппарата ВЕГА была осуществлена в 1985 году). Принцип проекта — использование самого современного комплекса научной аппаратуры в сочетании с многократно проверенными средствами доставки научной аппаратуры (было выполнено 10 успешных посадок Венера-ВЕГА) является залогом успешности научного проекта и вызывает доверие у зарубежных участников проекта.

213

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Абрамович С.К., Агеева Т.Д., Аким Э.Л. и др. Баллистика и навигация автоматических межпланетных станций «Венера-9» и «Венера-10» // Космические исследования. 1976. Т. 14. № 5. С. 667-676.
- Абрамович С.К., Агеева Т.Д., Аким Э.Л. и др. Баллистика и навигация автоматических межпланетных станций «Венера-11» и «Венера-12» // Космические исследования. 1979. Т. 17. № 5. С. 670-680.
- Агеева Т.Д., Аким Э.Л., Иванов Н.М. и др. Баллистика и навигация автоматических межпланетных станций «Венера-13» и «Венера-14» // Космические исследования. 1983. Т. 21. № 2. С. 160-169.
- Аким Э.Л., Степаньянц В.А. Численная теория движения Венеры по результатам радиолокационных наблюдений // ДАН. 1979. Т. 233. С. 314-318.
- Арманд Н.А., Гуляев Ю.В., Гаврик А.Л., Ефимов А.И., Матюгов С.С., Павельев А.Г., Савич Н.А., Самознаев Л.Н., Смирнов В.М., Яковлев О.И. Результаты исследований солнечного ветра и ионосфер планет радиофизическими методами // Успехи физических наук. 2010. Т. 180. № 5. С. 542-548. http://ufn.ru/ufn10/ufn10 5/Russian/r105j.pdf
- Барсуков, В.Л. А.Л. Суханов, А.Л. Аким и др., Геоморфологические характеристики северного полушария Венеры, *Геотектоника*, N. 4, с. 4-25, 1986.
- Барсуков, В.Л. А.Т. Базилевский, Р.О. Кузьмин и др., Геология Венеры согласно результатам анализа радарных изображений, полученных КА "Венера-15" и "Венера-16", предварительные резульаты, *Геохимия*, т. 22, с. 1811-1820, 1984.
- Гаврик А.Л. и др., 2009. Разработка метода исследования ионосферы и атмосферы Венеры с помощью двухчастотного радиопросвечивания (шифр "Венера-Д-ФИРЭ"): / ФИРЭ им.В.А. Котельникова РАН; научный рук. к.ф.-м.н. Гаврик А.Л. и др.. М.: ИРЭ им.В.А. Котельникова РАН, 2009. 51 с. –Библиогр.: с. 49-51. Инв. № 119/114/117/138-20-2009.
- Гаврик А.Л., 2011а. Проработка требований к радиолинии ОА-СС для проведения экспериментов двухчастотного радиопросвечивания ионосферы и атмосферы Венеры (шифр "Венера-Д-ИРЭ-2011"): / ФИРЭ им.В.А. Котельникова РАН; научный рук. к.ф.-м.н. Гаврик А.Л. и др.. М.: ИРЭ им.В.А. Котельникова РАН, 2011. 31 с. –Библиогр.: с. 21-22. Инв. № 119/114/117/138-18-2011.

- Гаврик А.Л., Гаврик Ю.А., Копнина Т.Ф. О возможности увеличения чувствительности метода радиопросвечивания // Журнал радиоэлектроники. 2011б. № 5. С. 1-18. <u>http://jre.cplire.ru/jre/may11/3/text.html;</u>
- Гаврик А.Л., Гаврик Ю.А., Копнина Т.Ф., Самознаев Л.Н. О возможности радиовидения слоистых структур в экспериментах радиопросвечивания ионосфер планет // Журнал радиоэлектроники. 2010а. № 5. С. 1-14. <u>http://jre.cplire.ru/jre/may10/1/text.pdf</u>
- Гаврик А.Л., Гаврик Ю.А., Копнина Т.Ф., Самознаев Л.Н.. Вариации амплитуд и частот когерентных радиосигналов при просвечивании дневной ионосферы Венеры // Радиотехника и электроника. 2010б. Т. 55. № 3. С. 277-284., http://www.maikonline.com/maik/showArticle.do?auid=VAG762MEP3&lang=ru
- Засова Л.В. и др., 2009. Проработка научных задач исследования Венеры на современном этапе и возможности их реализации при помощи миссии «Венера-Д», включающей орбитер, баллоны, посадочный аппарат: отчет о НИР: / Институт космических исследований РАН; научный рук. д.ф.-м.н. Засова Л.В. – М.: ИКИ РАН, 2009. – 863с. – Инв. № 053/000104.- <u>http://venera-d.cosmos.ru/uploads/media/Venera-D-2009.pdf</u>
- Засова Л.В. и др., 2010. Проработка научно-технических предложений по составу научных задач и аппаратуры для комплексных исследований атмосферы и поверхности Венеры. Определение научной программы экспериментов, состава и характеристик комплекса научной аппаратуры миссии "Венера-Д". Формирование требований к служебным системам КА для обеспечения выполнения научной программы. Разработка проекта ТЗ на комплекс научной аппаратуры КА "Венера-Д": отчет о НИР (итоговый): / Институт космических исследований РАН; научный рук. д.ф.-м.н. Засова Л.В. М.: ИКИ РАН, 2010. 346 с. Библиогр.: с. 321-334. № ГР Ф40550. Инв. № 053/000105.- http://venera-d.cosmos.ru/uploads/media/Venera-D-2010.pdf
- Засова Л.В. и др., 2011. Уточнение научной программы проекта и приборного состава комплекса научной аппаратуры исходя из результатов проработки проектного облика посадочного аппарата, орбитального аппарата и субспутника. Формирование требований к служебным системам КА, баллистический анализ миссии: отчет о НИР (итоговый): / Федеральное государственное бюджетное учреждение науки Институт космических исследований Российской академии наук (ИКИ РАН); научный рук. д.ф.-м.н. Засова Л.В. М.: ИКИ РАН, 2011. 300 с. <u>http://venera-d.cosmos.ru/uploads/media/Venera-D-2011.pdf</u>
- Засова Л.В., Мороз В.И., Линкин В.М. и др. Строение атмосферы Венеры от поверхности до 100 км // Космические исследования. 2006. Т. 44. № 4. С. 381-400.

- Засова Л.В., Мороз В.И., Формизано В. и др. Исследование Венеры с помощью ИК Фурьеспектрометра на *Венере-15* и Планетного Фурье-спектрометра на борту *Венеры-Экспрес.* // Космические исследования. 2006. Т. 44. № 4. С. 365-380.
- Иванов Н.М., Поляков В.С. Наведение автоматических межпланетных станций // М.: «Машиностроение». 1987. 312 с.
- Котельников В.А., Барсуков В.Л., Аким Э.Л. и др. Атлас поверхности Венеры // М.: Главное управление геодезии и картографии при Совете Министров СССР. 1989. 328 с.
- Молотов Е.П. Наземные радиотехнические системы управления космическими аппаратами // М.: ФИЗМАТЛИТ. 2004. 256 с.

Мюррей К., Дермотт С. Динамика солнечной системы // М.: ФИЗМАТЛИТ. 2009. 588 с.

- Разработка технических предложений в проекте «Венера-Д» по баллистиконавигационному обеспечению участка перелёта Земля – Венера после отделения баллона и посадочного модуля от основного КА, участков перехода на орбиту искусственного спутника Венеры и полёта по этой орбите. НТО по НИР «Венера-Д-ИПМ». Инв. № 5-011-10 // ИПМ им. М.В. Келдыша РАН. М.: 2010. 54 с.
- Разработка технических предложений по БНО полета КА «Венера-Д» и его составных частей в окне стартов 2016-2018 года при вариантах посадки СА в высоких северных и южных широтах Венеры. НТО по НИР «Венера-Д-ИПМ». Инв. № 5-033-11 // ИПМ им. М.В. Келдыша РАН. М.: 2011. 64 с.
- Разработка технических предложений по схеме перелёта Земля-Венера, маневрирования в сфере действия гравитационных сил Венеры и баллистико-навигационному обеспечению полёта. НТО по НИР «Венера-Д-ИПМ». Инв. № 5-013-09 // ИПМ им. М.В. Келдыша РАН. М.: 2009. 68 с.
- Савич Н.А., Азарх С.Л., Вышлов А.С., Гаврик А.Л., Лаптев Н.В., Набатов А.С. Флуктуации частоты когерентных радиосигналов в околосолнечной плазме по данным аппаратов "Венера-15,16" // Космические исследования. 1987. Т. 25. № 2. С. 243-250.
- Савич Н.А., Алтунин В.И., Андреев В.Е., Басос Ю.Ф., Богуславская Н.-Е.Е., Вышлов А.С., Гаврик А.Л., Дорощук О.Н., Кручкович М.М., Лясковская В.И., Молотов Е.П., Морской И.М., Набатов А.С., Овсянникова М.А., Селезнев В.В., Суханов К.Г., Шевердяев А.С. Двухчастотное радиозондирование кометы Галлея при пролете космических аппаратов Вега-1 и Вега-2 // Письма в Астрономический журнал. 1986в. Т. 12. № 9. С. 675-682.
- Савич Н.А., Андреев В.Е., Вышлов А.С., Гаврик А.Л., Конофалов В.П., Лаптев Н.В., Мармулев В.А., Местэртон А.П., Набатов А.С., Осмоловский И.К., Самознаев Л.Н., Штерн Д.Я. Ночная ионосфера Венеры по данным двухчастотного радиопросвечивания при помощи спутников "Венера-15,16" в 1983 г. // Радиотехника и электроника. 1986б.. Т. 31. № 3. С. 433-439.
- Савич Н.А., Андреев В.Е., Вышлов А.С., Гаврик А.Л., Конофалов В.П., Лаптев Н.В., Мармулев В.А., Местэртон А.П., Набатов А.С., Орлов Ю.Н., Осмоловский И.К., Самознаев Л.Н., Штерн Д.Я. Дневная ионосфера Венеры по данным радиозатмений спутников "Венера-15,16" в 1983 г. // Радиотехника и электроника. 1986 а. Т. 31. № 11. С. 2113-2120.
- Сихарулидзе Ю.Г. Баллистика и наведение летательных аппаратов // М.: БИНОМ. Лаборатория знаний, 2011. 407 с.
- Соловьев Ц.В., Тарасов Е.В. Прогнозирование межпланетных полетов // М.: Машиностроение, 1973. 400 с.
- Суханов, А.Л., Паркет: Области площадных пластических дислокаций, *Геотектоника*, N. 4, с. 60-76, 1986.
- Тарасов Е.В. Космонавтика (Механика полета и баллистическое проектирование КЛА) // М.: Машиностроение, 1973. 216 с.
- Титов Д.В., Сведхем Х., МкКой Д. и др. *Венера-Экспресс*: научные задачи, аппаратура и сценарий миссии // Космические исследования. 2006. Т. 44. № 4. С. 349-364.
- Яковлев О.И. Космическая радиофизика. М.: РФФИ. 1998.
- Яковлев О.И., Павельев А.Г., Матюгов С.С.. Спутниковый мониторинг Земли: радиозатменный мониторинг атмосферы и ионосферы. М. Либроком. 2010. 208 с.
- Akim E.L., Vlasova Z.P., Stepan'yants V.A. and Tuchin A.G. Orbit determination for a radar mapping satellite of Venus // Earth, Moon, and Planets. Springes Netherlands. Vol. 50-51. № 1/ Jule 1990. P. 559-578.
- Basilevsky, A. T. and J.W. Head, The geologic history of Venus: A stratigraphic view, *Journ. Geophys. Res.*, v.103, p. 8531-8544, 1998.
- Basilevsky, A.T., Geologic map of the Beta Regio quadrangle (V-17), Venus, USGS Geol. Inv. Ser., Map 3023, 2008.
- Basilevsky, A.T., J.W. Head and A.M. Abdrakhimov, Impact crater air fall deposits on the surface of Venus: Areal distribution, estimated thickness, recognition in surface panoramas, and implications for provenance of sampled surface materials, *Journ. Geophys. Res.*, v. 109, E12003, doi:10.1029/2004JE002307, 2004.

- Basilevsky, A.T., M.A. Ivanov, J.W. Head, M. Aittola, and J. Raitala, Landing on Venus: Past and future, *Planet. Space Sci.*, v. 55, p. 2097–2112, 2007.
- Bellucci G., L. Zasova, F. Altieri, F. Nuccilli, N. Ignatiev, V. Moroz, I. Khatuntsev, O. Korablev, A. Rodin (2002), Venus ultraviolet-visual mapping spectrometer, 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, 2002 in Houston, TX, USA., meeting abstract.
- Bellucci G., V. Formisano, F. Capaccioni (1998). An imaging spectrometer operating in the visible near infrared for the study of planetary surfaces, Planet. Space Sci., 46, 1277–1290.
- Bindschadler, D.L. and J.W. Head, Tessera terrain, Venus: characterization and models for origin and evolution, *Journ. Geophys. Res.*, v.96, p.5889-5907, 1991.
- Brace L.H., Kliore A.J. The structure of the Venus ionosphere // Space Science Reviews. 1991. V. 55. Jan.-Feb. P. 81-163.
- Campbell, D. B., N.J.S. Stacy, W.I. Newman, et al., Magellan observations of extended impact crater related features on the surface of Venus, *Journ. Geophys. Res.*, v.97, N.E10, p.16249-16278, 1992.
- de Berg C., Bezard B., Owen T., Crisp D., Maillard J-P., Lutz B.L., Deuterium on Venus: Observations From Earth, Science, v. 251. p. 547-549, 1991.
- Formisano, V.; Angrilli, F.; Arnold, G.; Atreya, S.; Baines, K. H.; Bellucci, G.; Bezard, B.;
 Billebaud, F.; Biondi, D.; Blecka, M. I.; Colangeli, L.; Comolli, L.; Crisp, D.;
 D'Amore, M.; Encrenaz, T.; Ekonomov, A.; Esposito, F.; Fiorenza, C.; Fonti, S.;
 Giuranna, M.; Grassi, D.; Grieger, B.; Grigoriev, A.; Helbert, J.; Hirsch, H.; Ignatiev, N.;
 Jurewicz, A.; Khatuntsev, I.; Lebonnois, S.; Lellouch, E.; Mattana, A.; Maturilli, A.;
 Mencarelli, E.; Michalska, M.; Lopez Moreno, J.; Moshkin, B.; Nespoli, F.;
 Nikolsky, Yu.; Nuccilli, F.; Orleanski, P.; Palomba, E.; Piccioni, G.; Rataj, M.;
 Rinaldi, G.; Rossi, M.; Saggin, B.; Stam, D.; Titov, D.; Visconti, G.; Zasova, L. The
 planetary fourier spectrometer (PFS) onboard the European Venus Express mission.
 Planetary and Space Science, Volume 54, Issue 13-14, p. 1298-1314, 2006.
- G. Durry, I. Vinogradov, O. Korablev, M. Gerasimov, et al., Applied Physics B, 99, 339-351, 2010

Grimm, R.E. The deep structure of Venusian plateau highlands, *Icarus*, v.112, p.89-103, 1994. <u>http://isdc.gfz-potsdam.de</u>

Interplanetary mission design handbook. Volume 1, Part 2. – NASA, 1983/ – 180 p. URL: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840010158_1984010158.pdf (дата обращения 04.04.2012)

- Ivanov, M. A. and J. W. Head, Geology of Venus: Mapping of a global geotraverse at 30N latitude, *Journ. Geophys. Res.*, v.106, p.17515-17566, 2001.
- Ivanov, M. A. and J. W. Head, Tessera terrain on Venus: A survey of the global distribution, characteristics, and relation to surrounding units from Magellan data, *Journ. Geophys. Res.*, v.101, p.14861-14908, 1996.
- Ivanov, M.A., and J.W. Head, Global geological map of Venus, *Planet. Space Sci.*, v. 59, p. 1559-1600, doi:10.1016/j.pss.2011.07.008, 2011.
- Ivanov, M.A., Morphology of the tessera terrain on Venus: Implications for the composition of tessera material, Solar System Research, v. 35, p. 1-17, 2001.
- Jenkins, J.M., P.G. Steffes, D.P. Hinson, J. Twicken and G.L. Tyler. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft: 2. Results from the October 1991 experiments // Icarus. 1994. V. 110. P. 79-94.
- Kliore A.J., Elachi C., Patel I.R.. // Icarus. 1979. V. 37. P. 51-72.
- Linkin, V. M.; Blamont, J.; Deviatkin, S. I.; Ignatova, S. P.; Kerzhanovich, V. V. Thermal structure of the Venus atmosphere according to measurements with the Vega-2 lander. Cosmic Res. vol. 25, 1987, p. 659-672.
- Nikolaeva, O.V., A.A. Pronin, A.T. Basilevsky, M.A. Ivanov, and M.A. Kreslavsky Are tesserae the outcrops of feldspathic crust on Venus? *Lunar Planet Sci. Conf. 19 (Abstr.)*, p.864-865, 1988.
- Nikolaeva, O.V., Geochemistry of the Venera 8 Material demonstrates the presence of continental crust on Venus, *Earth, Moon, and Planets*, v.50/51, p.329-341, 1990.
- Nikolaeva, O.V., M.A. Ivanov, and V.K. Borozdin Evidence on the crustal Dichotomy, In: Venus Geology, Geochemistry, and Geophysics (Research Results from the USSR),
 V.L.Barsukov, A.T.Basilevsky, V.P.Volkov, and V.N.Zharkov, eds., University of Arizona Press, Tucson, London, p.129-139, 1992.
- Pätzold M., Häusler B., Bird M. K., Tellmann S., Mattei R., Asmar S.W., Dehant V., Eidel W., Imamura T., Simpson R.A. & Tyler G.L. The structure of Venus' middle atmosphere and ionosphere // Nature. 2007. V. 450. P. 657-660. doi:10.1038/nature06239.
- Sjogren W. L., B.G. Bills, P.W. Birkeland, et al., Venus gravity anomalies and their correlations with topography, *Journ. Geophys. Res.*, v.88, p.1119-1128, 1983.
- Sjogren W. L., R.J. Phillips, P.W. Birkeland, and N. Wimberly, Gravity anomalies on Venus, *Journ. Geophys. Res.*, v.85, p.8295-8302, 1980.

- Sukhanov, A.L. Tesserae, In: Venus Geology, Geochemistry, and Geophysics (Research Results from the USSR), V.L.Barsukov, A.T.Basilevsky, V.P.Volkov, and V.N.Zharkov, eds., University of Arizona Press, Tucson, London, p.82-95, 1992.
- Sun Y.Q., Du Q.F., Bai W.H., Tao P., Wu J., Zhu G.W., Zhao H., Xiong H., Zheng J.H., Wu X.C., Kosov A.S, Gotlib V.M. YH-1 Satellite Martian radio occultation Receiver / The first Moscow Solar system symposium 1MS3. 2010. P. PS-41.
- Tarsitano, C. G., and Webster C. R. (2007), Multilaser Herriott cell for planetary tunable laser spectrometers, *Applied Optics*, Vol. 46, Issue 28, pp. 6923-6935 (2007) http://dx.doi.org/10.1364/AO.46.006923
- Svedhem, H.; <u>Titov, D.;</u> <u>Taylor, F.;</u> <u>Witasse, O.</u> Venus Express mission, Journal of Geophysical Research, Volume 114, 2009, CiteID E00B33
- Zasova L.V. The structure of the Venusian atmosphere at high latitudes // Advances in Space Res. 1995. V.16. P. 89-98.
- Zasova L.V., Ignatiev N.I., Khatuntsev I.V., Linkin V. Structure of the Venus atmosphere // Planetary and Space Science. 2007. V. 55. Issue 12. P.1712-1728.
- Zasova L.V., V.A. Krasnopolsky, and V. I. Moroz (1981), Vertical distribution of SO₂ in the upper clouds of Venus and origin of UV absorption. Adv. Space Res., 116-13.
- Zasova L.V., V.I. Moroz, L.W. Esposito and Na C. Y. (1993) SO₂ in the middle atmosphere of Venus: IR and UV data, Icarus, 105, 92-109.