AN AEROSOL INSTRUMENT PACKAGE FOR CHARACTERIZING THE VENUS CLOUD HABITABILITY ZONE

Kevin H. Baines¹, James A. Cutts¹, Dragan Nikolić¹, Stojan M. Madzunkov¹, Jean–Baptiste Renard², Olivier Mousis³, Laurie M. Barge¹, and Sanjay S. Limaye⁴

- ¹ Jet Propulsion Laboratory, California Institute of Technology
- ² LPC2E-CNRS, Universite d'Orléans
- ³ Aix Marseille Univ., CNRS, CNES, LAM

⁴ Space Science and Engineering Center, U. of Wisconsin- Madison

The Venera-D Landing Sites and Cloud Habitability Workshop, The Space Research Institute (IKI), Moscow, October 5, 2019

© 2019. All rights reserved.

AN AEROSOL INSTRUMENT PACKAGE FOR CHARACTERIZING THE VENUS CLOUD HABITABILITY ZONE

Agenda-

- Motivation: Cloud/Aerosol Characterization
 - Composition Including particle interiors
 - Particle Size/Distribution/Concentration
 - Particle Type Characterization (Refractory vs Condensates; Spherical vs Fractal)
- Current Instrument Design/Capabilities
 - 2 Components, in integrated singlepathway system
 - The same particles are measured by both components
 - Proximal (few cm away) gas-only sample measured as well
 - Component A: JPL Venus Aerosol Mass
 Spectrometer (VAMS): Composition, including isotopic distributions
 - Component B: CNES-CNRS/LPC2E LONSCAPE Nephelometer: Particle size, distribution, scattering phase function; Particle type

Meteorology, and, Potentially, Life

- H₂SO₄ Aerosols: Key to Venus's Clouds, Radiative Balance, Meteorology, and Circulation
- **Sulfur-Cycle** H_2SO_4 clouds highly variable: Depend on amounts of UV light, water, and SO_2 .
 - $H_2O + SO_3$ (from SO₂, UV photolysis) => H_2SO_4
 - UV light depends on time of day
 - Variable water at cloud base (Tsang et al, 2010)
 - SO_2 : Expected to vary by > 200% over a few km of altitude
 - Variable H₂SO₄-H₂O acidity predicted with altitude/temperature
 - Additional variations due to vertical dynamics and advection
 - Sink and source of sulfuric species

- UV-Absorbing Patchy Haze Layer of Particular Interest:

- Unknown Composition => Perhaps complex chemistry, Life?
- Significant Effect on Radiative Balance and Thermal Structure

<u>Life in the Clouds</u>? (Limaye et al, 2017): Micro-organism Survival mechanisms:

- Energy: iron/sulfur oxidation via fixated CO₂
 - Gravity waves, convection locally counter precipitation

Limaye et al., 2017, *Astrobiology* 18, DOI 10.1089/ast.2017.1783

In-Situ Platforms: Atmospheric Instruments and Measurement Objectives

Instruments	Abbreviation	Measurement Type/Objectives
ATMOSPHERIC GAS COMPOSITION		
Mass Spectrometer	MS or GCMS	Atmospheric species including noble gases and their isotopes. Survey instrument
Tunable Diode Laser Spectrometer	TDL	Trace species including isotopic abundances. Targeted on a few species
UV/IR Spectrometer	UVS, IRS	Atmospheric species from their spectal signatures. Survey instrument
Chemical Sensors (MEMS based)	ChemSens	Chemical species. Small low power instrument targeted on a few species
CLOUD AND HAZE PARTICLES		
Nephelometer	Neph	Size, scattering properties and abundance of cloud and haze particles in bulk
Light Optical Amospheric Counter	LOAC	Size, scattering properties and abundance of cloud and haze particles individual
Imaging Microscope	Mic	Images larger cloud particles captured on a filter.
Aerosol Mass Spectrometer	AMS	Chemical composition or biological nature of aerosols (individual or bulk)
ATMOSPHERIC STRUCTURE		
Atmospheric Structure Instrument	ASI	Temperature, pressure and vertical wind speed.
Net Flux Radiometer	NFR	Upward and downward flux of radiation in multiple spectral bands
Ultra Stable Oscillator	USO	Wind velocity from Doppler signatures from DSN and orbit

Instrument Package covers

From "Aerial Platforms for the Scientific Exploration of Venus", October, 2018

VAMS Measurement Objectives:

- **I. Composition of UV/blue-absorbing aerosols**, currently thought to be present throughout the clouds from ~ 70 to 48 km altitude (Krasnopolsky, 2017 ; Limaye et al., 2018)
 - S₃, S₄, S₈ perhaps from OCS photochemistry at ~55-60 km altitude (Toon et al, 1982; Krasnopolsky, 2016)
 - Iron Chloride (FeCl₃; Zasova et al., 1981; Krasnopolsky, 2017)
 - Hydrobromic acid (HBr; Sill, 1975; Kasnopolsky, 2017).
 - Daughter products of HCl, HF, HBr-H₂SO₄ aqueous chemistry (Baines and Delitsky, 2013; Delitsky and Baines, 2015, 2018)
 - Croconic Acid (C₅O₅H₂; Hartley et al., 1989)
 - Biological Sources (e.g., Morowitz and Sagan, 1967; Schulze-Makuch and Irwin, 2006; Limaye et al., 2018)

II. Composition of Major Cloud

- H₂SO₄-H₂O weight percent over altitude
- H_2SO_4 , with admixtures of HCl, HF, HBr, etc: ~2 ppb HCl/ H_2SO_4 at 55 km altitude
- Other contaminants
- Biological Sources

Aqueous Chemistry in Sulfuric Acid Clouds

Three + Steps:

- 1. Uptake of HF, HCl (and HBr) molecules into H₂SO₄-nH₂O particles
- 2. Buildup toward the Henry's Law saturation amount
- 3. Chemical conversion of trace gases into complex molecules
 - Continued buildup toward saturation, continued chemical conversion

Delitsky and Baines, 2018

Formation of Sulfonic Acids and Daughter Products in Sulfuric Acid Clouds

Chemical reactions involving HCl, HF and Br with H₂SO₄ in aerosol particles create more complex molecules. Additional complex chemistry occurs Within H_2SO_4 aerosols once sulfonic acids are formed

Delitsky and Baines, 2018

Predicted Saturated Abundance of HCl/H₂SO₄ inside H₂SO₄ Aerosol Particles in Venus

					Required	
					Measurement	H_2SO_4
						Aerosol
Altitude	C (wt%)	T (K)	Pressure	HCl/H ₂ SO ₄	Capability for	Mass
(km)			(mbar)	Abundance	20% Accuracy	(mg/cm3)
				(ppb)	(ppb)	
70	72.8	216	25.1	87217.8	17443.6	7.94E-07
69	73.7	221	30.2	37738.0	7547.6	8.91E-07
68	74.1	224	36.3	26153.5	5230.7	1.00E-06
67	74.6	227	42.7	18000.2	3600.0	1.12E-06
66	75.0	232	52.5	10644.6	2128.9	1.26E-06
65	75.3	238	66.1	6207.4	1241.5	1.41E-06
64	76.1	243	79.4	3176.7	635.33	1.58E-06
63	76.9	245	95.5	2194.5	438.89	1.78E-06
62	78.4	247	120.2	1152.1	230.42	2.00E-06
61	79.0	249	151.36	919.33	183.87	2.24E-06
60	79.7	251	177.83	655.80	131.16	3.16E-06
59	79.0	254	220	870.17	174.03	2.51E-06
58	81.0	265	250	164.50	32.901	1.58E-06
57	83.2	272	300	43.250	8.6499	2.51E-06
56	85.5	280	340	9 9342	1 9868	3 16E-06
55	88.0	290	410	2.0517	0.4103	2.00E-05
54	90.0	300	490	0.5619	0.1124	2.00E-05
53	92.0	312	580	0.1464	0.0293	2.00E-05
52	94.0	325	690	0.0393	0.0079	2.00E-05
51	96.0	334	800	0.0127	0.0025	1.58E-06
50	97.0	342	970	0.0047	0.0009	1.00E-05

Estimated Abundances of Other Potential Species in H_2SO_4 Particles to Explain UV Absorption:

FeCl₃/H₂SO₄: ~1% (Zasova et al, 1981; Krasnopolsky, 2017)

HBr/H₂SO₄: ~ 3 x HCl/H₂SO₄ (1.2 ppb in atmosphere vs 400 ppb for HCl, Krasnopolsky, 2017, with H* ~ 10^3 greater)

Measurement Goal: 2 ppb in 300 second integration

Delitsky and Baines, 2018

JPL AMS Measurement Technique

QITMS – Quadrupole Ion Trap Mass Spectrometer (Madzunkov and Nikolić, 2014) fed by aerosols injected through an Aerodynamic Lens system that separates aerosols from atmospheric gases.

- Atmospheric sample is sequentially expanded through orifices from high-pressure segments of aerodynamic lens into progressively lower pressure segments.
- Gases expanded away, while much heavier aerosols remain collimated on the jet axis
- Jet of aerosols mixed with rarified gas phase is introduced into the QITMS, striking heated electrodes (~ 350 C) and vaporizing upon impact.
- Aerosol-produced vapor is analyzed to determine aerosol composition

Diagram of aerosol mass spectrometer (AMS) with typical downstream operating pressures. Three turbomolecular pumps (P1-P3) evacuate the particle inlet and three chambers, where P1 can be either a turbomolecular or a mechanical pump.

JPL VAMS Measurement Capabilities

QITMS – Quadrupole Ion Trap Mass Spectrometer - fed by aerosols injected through an Aerodynamic Lens system that separates aerosols from atmospheric gases.

Goal: HCI/H₂SO₄ abundances: 2 ppb measured to 10% accuracy in 300s at 55 km with H₂SO₄ atmospheric aerosol mass density of 20 mg/m³ (per Knollenberg and Hunten, 1980)

1-150 amu: Covers 48% of S₈ fragments, 97% of amino acid fragments
(With 1 MHz RF frequency, amplitude 1.5 kV; Possible to extend to 300 amu with 4 times higher voltage)

Multiplexing Mass Spectrometer: 16,385 channels measured simultaneously => 0.01 amu resolution in high-amu-sensitivity mode (e.g. for isotopes) in 50 ms samples (20 complete spectra per second)

- Channels can be binned to 16 for improved S/N for bulk constituent measurements: ~0.15 amu resolution

THE JPL VENUS AEROSOL MASS SPECTROMETER CONCEPT

<u>Schematic diagram</u>: Proposed lightweight Aerosol Separator (thick line envelope) in tandem with the QITMS aerosol chemical composition analyzer. Red flow lines and black dots represent, respectively, gas streamlines and suspended aerosol particles. Adjustable piezoelectric aperture ensures relaxation tube is kept at P_{rlx} =2.1 Torr over Venusian pressures of 19 to 760 torr, corresponding to a Venus altitude range of 70-50-km. <u>Aerodynamic Lens</u>: Based on nanojet technology; Presently Schreiner type; 7 step-down sections; 10.7-cm long; Collaboration with Integrated Deposition Solutions, Inc (IDS). Goal: Entire VAMS Component < 9 kg; < 40 W peak power (with heater, 30 W nominal). Adding on reactive gas and noble gas modes: Additional ~2 kg,Total: < 11kg))₁₀

THE LONSCAPE/LOAC CONCEPT

Potential for combining with CNES-CNRS/LPC2E LONSCAPE Nephelometer/ LOAC Aerosol Counter Concept

- LONSCAPE: Light Optical Nephelometer Sizer and Counter for Aerosols in Planetary Environments

Next Generation Version of LOAC: Light Optical Aerosol Counter

Combined with the JPL Aerosol Mass Spectrometer Concept, would create essentially a complete Aerosol Instrument Package that measures:

- Particle size distribution/concentration, scattering properties
- Particle phase functions
- Particle composition (via both direct sampling and particle phase function information)

LONSCAPE presented in paper under review at Space Science Reviews:

Renard, J.-B., Mousis, O., Rannou, P., Levasseur-Regourd, A.-C., Berthet, G., Geffrin, J.-M., Hadamcik, E., Verdier, N., and Millet, A.-L., Daugeron, D. (2020). Counting and phase function measurements to determine the physical properties of the aerosols in the ice giant atmospheres (LONSCAPE instrument). *Space Sci. Rev.*, Submitted.

THE LONSCAPE/LOAC CONCEPT

LONSCAPE Nephelometer

- Measures 11 angles
- 20 170° phase angle
 every 15°
- Should be able to measure
 - ~ 300 particles/cm³ for small (~0.2 μm) particles
 - $0.2 10 \ \mu m$ particles
- Use Laser and 11 photodiodes ~ 10.0 x 5.5 x 3.0 cm³
- Would be positioned in front of the VAMS Aerosol
 Separator in the airflow.
 - LONSCAPE first measures particles size/shape and cattering characteristic
 - VAMS then directly samples their composition, up to 150 AMU, including isotopic information

Fig.3 Possible design of the optical chamber for the LONSCAPE instrument (sizes are in mm)

From: Renard et al.,2020. Space Sci. Rev., Submitted

13

Fig.4 Mie scattering calculations for transparent (black lines) and strongly absorbing droplets (red lines) at | = 650 nm, for 3 sizes of monodisperse particles; the chosen complex refractive indexes are 1.45 and 1.5 + 0.5i, respectively, for illustration purpose. The squares represent the values of the phase function for the 11 angle positions proposed for LONSCAPE. From: Renard et al.,2020. *Space Sci. Rev.,* Submitted

AN AEROSOL INSTRUMENT PACKAGE (AIP) FOR CHARACTERIZING THE VENUS CLOUD HABITABILITY ZONE

Potential Applications AIP for Venus Cloud Habitability Studies on In-Situ Missions

- Probes: Profile of composition with depth
 - ~ 100 m/s descent rate => 1 km sampling every 10 s:
 - => 12 ppb to 10% accuracy
- Aerial platforms: Aerobots (e.g., Variable Altitude Balloons; See Rabinovitch et al. talk)
 - Linger for hours over small range of altitudes
 - Can traverse to different altitudes
 - Measure 2 ppb to 10% accuracy in 300 s,
 - Measure Aerosol Composition/Size/Type Over:
 - Aerobot altitude
 - Time (e.g. dynamical effects, day/night cycle)
 - Latitude and longitude (low, mid, high lats)
 - Compare aerosol composition against attendant gases
 - Measure Isotopic differences (¹³C/¹²C; ¹⁷O/¹⁶O, ¹⁵N/¹⁴N, ³³S/³⁴S, D/H, etc)
 - Hydrocarbons, H_xC_yN_z, Phosphorus compounds e.g., H₃PO₄ (Phosphoric acid: ~98 amu)

Extremophile Microorganisms Able to Withstand Venus Cloud Conditions

This Workshop

- Prior Venus measurements have revealed that five of the six common elements found in living organisms the CHNOPS elements carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are present in the cloud habitability layer
- Phosphorus has never been detected anywhere on Venus, If present in the cloud layer it is most likely present in aerosols. Phosphine (PH₃), unstable in the Venus atmosphere, is the only likely volatile phosphorus compound
- A key contribution of the proposed experiment with an aerosol mass spectrometer is to search for phosphorus in the Venus cloud layer.
 - If phosphorus is present, then all of the elements necessary for life as we know it are present in the Venus cloud habitability layer
 - If phosphorus is **absent**, it means a key element necessary for life is missing and the possibility that microbial life would be detected there is drastically reduced

Why is Phosphorus Critical for Life?*

- Phosphoric acid is specially adapted for its role in nucleic acids because it can link two nucleotides and still ionize. The resulting negative charge
 - Stabilizes the di-esters against hydrolysis
 - Helps retain the molecules within a lipid membrane
- A similar explanation for stability and retention also holds for phosphates that serve as intermediate metabolites or energy sources
- No other elements or combination of elements appears to be able to fulfil the unique role of phosphorus in biochemistry

U.S. National Library of Medicine

Phosphates form the backbone of the DNA double helix

Confirming the presence of phosphorus in aerosols of the Venus cloud habitability layer would provides critical information on the potential for supporting life

*Reference: Why Nature Chose Phosphates by F.H. Westheimer, Science Vol. 235, 1173-1178, 1987

Venus Cloud Habitability: Desired Measurements

Cloud Habitability: Desired Measurements					
Objective	Cloud Property	Desired Altitude	Desired Time-of-Day	Desired Latitudes	Desired
		Range	Range	and/or Terrains	Sensitivity
Rulk Cloud Proportion	s Aerosol Number Density	~65 - 45 km	0-24 hours	Temporate to Polar Lats	
Buik cloud riopertie	Aerosol Size distribution	~65 - 45 km	0 -24 hours	and over high-elevation	
	Aerosol bulk composition	~65 - 45 km	0 -24 hours	features (Gravity wave	
	(H ₂ SO ₄ acidity)			effects)	
Cloud Dynamics	Drossura Tomporaturos				
	Vortical winds				
	Wayes (gravity planetary)				
Cloud Particle Trace	HCL HE HBr and daughter				
Species Compositi	in species				
openes compositi	Hydrocarbons	Astrobic	plogists: Plea	ase Help to Fi	Out
	Phosphorus	and Exp	and Such a	Table!	
	Light isotopes:	•			
	¹³ C/ ¹² C				
	¹⁵ N/ ¹⁴ N				
	D/H				
Composition of	HCl, HF, HBr				
Attendant Cloud	Hydrocarbons				
Gases	H ₂ O				
	Phosphorus				
	Light isotopes:				
	¹³ C/ ¹² C				
	¹⁵ N/ ¹⁴ N				
	D/H				