The miniaturized Mössbauer spectrometer MIMOS II for the investigation of Venus' surface

Christian Schröder¹, Daniel Rodionov², Bodo Bernhardt³, Mathias Blumers⁴, Harald Gaber⁵, and Franz Renz⁶

¹University of Stirling, UK ²IKI, Moscow, Russia ³Von Hoerner & Sulger GmbH, Schwetzingen, Germany ⁴Universitätsklinikum Bonn, Germany ⁵Johannes Gutenberg-Universität Mainz, Germany ⁶Leibniz Universität Hannover, Germany

MIMOS II

The miniaturized Mössbauer spectrometer consists of

- Sensor head
 - ⁵⁷Co gamma-radiation source (halflife 272 days)
 - detector system
 - \circ volume of 50×50×90 mm³.

Electronics board

- data acquisition and instrument control units (CPU + FPGA)
- voltage converters
- $\odot~$ electrical and data interfaces to the spacecraft
- \odot Volume 100×160×25 mm³.
- □ Weight <500 g
- Power consumption 4 W
- Data product size 512 kBytes (4 Mbit)

MIMOS II Contribution to Science Goals

- **G** Fe-bearing mineral phases
- Fe oxidations states
- Quantitative distribution between mineral phases and oxidation states
- Potential for XRF
- Elemental and mineralogical composition of surface, including radiogenic elements.
- ✓ Interaction between surface and the atmosphere.
- Structure and chemical composition of atmosphere to surface, including abundances of trace and noble gases and isotopic ratios of elements

THF DIFFFRFNCF

NASA Mars Exploration Rover

Two robotic field geologists to

- 1. Explore two sites on Mars where water may once have been present
- 2. Assess past environmental conditions
- 3. Assess suitability for life

Follow-the-Water strategy:

Look for mineralogical and geochemical evidence for aqueous water activity on Mars

Klingelhöfer et al. (2003) J. Geophys. Res. 108(E12), 8067

ESA/UK Beagle 2

Pullan et al. (2003) ESA SP-1240

Rodionov et al. (2010) Solar System Research 44, 362-370

Lunar ISRU

$Fe^{2+}O + \underset{\scriptscriptstyle \uparrow}{H_2} \rightarrow Fe^0 + H_2O$

 $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

Consumption (breathing, fuel, etc.)

Oxygen yield:

- **2** 5 wt.%
 - (1 t of oxygen per 20 t of regolith)
- Proportional to FeO content
- Temperature-dependent
 - \odot 900°C ilmenite and glass
 - \circ >1000°C olivine and pyroxene

Determine yield in g O₂/100 g sample: 100g*(FeO content)*(% O in FeO)*(Fe⁰/Fe_T)

Ten Kate et al. (2013) *Journal of Aerospace Engineering* 26,183-196

MIMOS IIA

- Silicon Drift Detectors
 - Higher energy resolution
 - Improved signal-to-noise
 - \odot Improved XRF capability
- Energy and Mössbauer spectra acquired simultaneously
- 1024 channels

Blumers et al. (2010) *Nuclear Instruments and Methods in Physics Research Section A*, 624, 277-281.

UNIVERSITY of STIRLING

MIMOS IIA

Schröder et al. (2011) *Geochemistry: Exploration, Environment, Analysis* 11, 129-143

Sulfur Cycle on Venus

From Visscher, after Fegley et al. (1995)

Pyrite decomposes to pyrrhotite

Fegley et al. (1995) *Icarus* 115, 159-180

mm

S1

RLING

Basalt oxidation and formation of hematite

Fegley et al. (1995) Icarus 118, 373-383

സ്സസ

RLING

S1

Considerations for Venus conditions

□ 1-3 spectra because of short life time of lander

- Access to variety of samples?
- Can sampling system deliver more than one sample?
- □ Instrument currently operational -120°C to +30°C
 - Detector performance (energy resolution) decreases with increasing temperature

THF DIFFFRFNCF

- □ Mössbauer spectra are temperature-dependent
 - Keep sample temperature stable

Pressure adjustments necessary?

Conclusions

Improved MIMOS II for Venus

- Faster spectral acquisition
- Higher resolution
- Simultaneous Mössbauer and XRF
- Elemental and mineralogical composition of surface
 - Fe-bearing mineral phases
 - Some elements via XRF
- □ Interaction between surface and the atmosphere.
 - Geochemical Fe cycle and atmospheric S cycle are linked

HF DIFFFRFNCF

○ Fe oxidation states of surface material

Acknowldegements

