Venera-D Lander payload instruments

M. Gerasimov and T. Economou

Space Research Institute RAS, Moscow, Russia, October 2, 2019

Descent and at Surface Science

Science Objective	Notional Instrument
Atmospheric Science	
L1. Atmosphere composition during descent, aerosols composition and microphysics UV-absorber	Multi-channel tunable laser spectrometer & Chemical analyses package (CAP)Gas Chromatograph Mass Spectrometer, Raman-LIDAR
L2. Atmosphere chemical composition at the surface	Chemical Analyses Package (CAP)Gas Chromatograph Mass Spectrometer
L3. Atmospheric structure and dynamics of lower atmosphere (meteorology)	Temperature-Pressure-Wind (TPW) package (accelerometer/altimeter, photometer, radiometer, radio science); LLISSE
L4. Physical properties of atmospheric aerosols	Raman-LIDAR
Surface Geology & Geophysics:	
L5. Surface structure and morphology	Imaging System (Descent imager; panoramic camera; microscopic imager)
L6. Surface elemental composition	XRD/XRF; CAP-LIMS; XRF mode of Mössbauer spectrometer Active Gamma-spectrometer (e.g. AGNESSA)
L7. Mineral phases	XRD/XRF; Mössbauer spectrometer
L8. Global and regional seismic activity	Seismometer
L9. Electromagnetic fields	Wave-package
Priorities: High Medium Low	

Notional LANDER PAYLOAD

- X-Ray Diffraction/X-Ray Fluorescent Analyzer (XRD/XRF)
- Mössbauer spectrometer + APXS mode
- **TV-** cameras (landing, stereo, panoramic, high res. up to 0.1 mm)
- Chemical Analysis Package (GCMS + LIMS)
- Raman (with synergistic LIDAR)
- METEO-Lander-Temperature-Pressure-Wind (TPW) Package
- Active Gamma and Neutron Spectrometers
- Multi channel tunable diode laser absorption spectrometer (MTDLAS)
- Infrared radiometer & UV-Vis spectrometer
- Long-Lived In-situ Solar System Explore (LLISSE)
- Devices for atmosphere and surface sampling

Instruments + structure – 120 kg Sampling device – 35 kg

Lander, preliminary arrangement of scientific payload (NPOL)

General view of the Soil Sampling System (SSS)

- 1 pyro cartridge assemblage
- 2 gas transfer tubes
- 3 the sample transfer mechanism
- 4 the vacuum tank
- 5 the drill
- 6 test stones

Principal scheme of the Soil Sampling System VB-02

Установка 1860 02

Further development of the SSS for the Venera-D

- 1. Multiple sampling:
 - a) the dust;
 - b) the stone crust (upper 2-4 mm);
 - c) the solid stone.
- 2. Soil preparation and distribution system inside the lander:a) to have a possibility to distribute the soil sample between
 - respective instruments (XRD/XRF, CAP, MS, APXS, ..?);
 - b) to refine the soil to the necessary shape for analysis (TBD).
- 3. Upgrade of mechanical and control units:
 - a) consider alternative drive options to reduce the weight;
 - b) consider the possibility of documentation of sampling;
 - c) consider alternative pumping methods to gain the necessary vacuum for analysis;
 - d) increase of a sample volume;
 - e) other.

Open questions related to Lander

- Modification of the entry profile to have higher detachment of the shield (to provide better sampling of the UV-absorber layer)
- Provision of a slower descent in the cloud layer
- How to know the Lander orientation after landing (rotation sensors, radio science, ...)?