

EnVision

Science Study Team System Engineering Working Group ESA Study Team / work in progress /

EnVision: ESA M5 candidate mission to Venus

Venus surface

• Global map

- 80% basalt lowlands
- 20% tesserae \bigcirc
- *unimodal surface height* Ο distribution
- Rare impact craters with random distribution over the planet \Rightarrow no Earth-like plate tectonics \Rightarrow relatively young surface (< 1 By)
- Very slow weathering
- Ancient ocean influenced the morphology and geochemistry of the planet?

Venera-D Workshop, 2-5 October 2019

Slide 2/26

Surface features

- Different kinds of volcanoes
- Coronae
- Impact craters
- Aeolian features
- Rift zones

Slide 3/26

Venera-D Workshop, 2-5 October 2019

Venus atmosphere

Slide 4/26

Venera-D Workshop, 2-5 October 2019

Hints at active volcanism

- Episodic variations of mesospheric SO₂
- *High emissivity near hotspot volcanoes: unweathered* lava?
- Temporal changes in thermal emission from surface: a volcanic eruption caught in the act?

Slide 5/26

Understanding DIFFERENT

Science Themes

I. Activity – *How geologically active is Venus today?* **II. History** – *How has Venus evolved through time?* **III. Climate** – *How has Venus' atmosphere been* determined by its geological activity?

EnVision aims to understand Venus from its clouds to the core and so discover why Venus is so different to Earth

DIFFERENT

I. How active is Venus today ? Science objectives

Spatial and temporal variations of volcanic gases (1) near-surface H_2O_1 , (2) SO_2 and H_2O at the cloud top (3) H_2SO_4 at 60-45 km (~ 1 ppm accuracy)

Surface topography to characterize volcanic and gravity driven processes

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Nature of radarbright highlands

Exploration scale: Changes in surface morphology (10-5 m resolution) on selected targets

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Interior structure

Search for subsurface boundaries

Map thickness of crust & lithosphere through improved gravity mapping with

Constrain interior structure through

III. What made Venus climate so hostile?

Science objectives

Variability of tropospheric and mesospheric gases and its link to volcanism

Variability of cloud particulates and its link to volcanism

Spatial and temporal variations of minor species in the troposphere with tbd sensitivity and their variations on time scales from hours to years and spatial scales of <100 km

Spatial and temporal variations of key trace gases at the cloud top (65-75 km) with tbd sensitivity on timescales from hours to years and spatial resolution from 50 to 3 km

Vertically integrated total cloud opacity, cloud properties and their variations on time scales from hours to years and spatial resolution of ~ 100 km (tbc)

Cloud top properties and their variations on time scales from hours to years with spatial resolution from 50 to 1 km, including spatial distribution of the unknown UV absorber

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Surface-atmosphere chemical interactions

SAR (Synthetic Aperture Radar)

recconnaisance observations with 30 m resolution

- $\circ \sim 20\%$ of the surface (repeated)
- o polarimetry
- Radiometry
- o stereo and interferometry
- o altimetry
- exploration imagery at 5 m (spotlight) to 10 m (stripmap) resolution and 20 km swath
- cm-scale deformation (in work)

Possible surface targets

SAR imaging hierarchy

				Targets for EnVision SA		
	Global	Regional		Reconnaissance	Exploration	
Feature size	10,000 m	1000 m		100 m	10 m	
Envision spatial resolution	50 km	1km		30 m	5-10 m	
Envision coverage (% global)	use Magellan	use Magellan		20%	2%	
EnVision coverage (km ²)	use Magellan	use Magellan		92,000,000 km²	9,200,000 km²	
Geomorphological features:						
Structures	Terra "continents"; planitiae; tesserae			chasmata, dorsa	folds, graben	
Volcanic features	Volcanic rises (Regiones)			volcanic edifices	lava flows	
Sediments	"Featureless" plains			parabolas, haloes	Landslides	

Slide 11/26

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

R observation

SAR "nesting" approach: a Martian lesson

Viking: 150 m / pixel [equivalent to Magellan] MGS: 20 m / pixel (MGS)

Slide 12/26

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

MRO: 1 m / pixel

Reconnaissance scale (10³ km @ 50m/px)

SAR emissivity

Weathered basalt [low permittivity]

Fresh basalt [high permittivity]

Simulated colour-coded emissivity [relative permittivity]

SAR polarimetry

Granular material [weathered lavas, soils]

Simulated polarimetric [VH-VV-HH RGB] PolSAR

Slide 13/26

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Rough bare rock [aa lava, boulders]

VenSAR Geodesy

• Planetary ephemerides

Spin axis wobble, improved GR, GM and J_2

Length of Day

Measure and understand variability in spin rate

VenSpec-M

surface imaging in the near-IR spectral "windows"

Spatial oversampling provides for mapping and confirmation of detected eruptions

VenSpec-M is a multi-spectral imager designed to:

- map surface composition on a global scale
- monitor for volcanic activity/ weathering
- map water vapour abundance near the surface

VenSpec-M will greatly improve sensitivity and spectral and spatial coverage wrt VIRTIS/ Venus EXpress:

- 14 spectral bands cover all five surface windows
- Oversampling at 10 km spatial resolution
- High signal to noise ratio

VIRTIS on Venus Express mapped the surface emissivity at 1 μ m

Slide 15/26

Global scale ($10^2 - 10^4$ km)

VenSpec-M emission maps

VenSpec-M emission spectra

Weathered basalt [*hematite-rich*]

Fresh basalt [magnetite-rich]

VenSpec-M Spectra of minerals

Simulated 3-band [1·1, 1·02, 0·9 µm RGB] VenSpec-M on VenSAR image

Slide 16/26

Venera-D Workshop, 2-5 October 2019

Subsurface Radar Sounder

The **Subsurface Radar Sounder** will acquire information on the shallow Venus subsurface down to 1000 m with vertical resolution of ~10 m to:

- characterize different stratigraphic and structural patterns in the subsurface
- map the vertical structure of geological units by exploring the subsurface properties of tessera, plains, lava flows, impact ejecta and other materials
- *detect subsurface structures that are not directly linked with surface*, e.g. stealth coronae

Portion of western Medusae Fossae Formation, Mars, a low-density pyroclastic deposit spanning across the crustal dichotomy on Mars td: Thin deposit (50–100 m) **nh**: North Hill deposit (~580 m) **ep**: Plains reflectors under Elysium Planitia [Carter et al. 2009]

Slide 17/26

Venera-D Workshop, 2-5 October 2019

DIFFERENT

Radio Science experiment

Gravity experiment

 gravity field at < 200 km resolution

Radio occultation experiment

- temperature profiles in the mesosphere
- \circ H₂SO₄ vapour and liquid phase abundance at 60-45 km

Slide 18/26

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Anderson & Smrekar, 2006

VenSpec -H, -U: IR and UV spectroscopy

VenSpec-H is a high resolution infrared spectrometer designed to:

- *H*₂O and HDO in the lower atmosphere
- H₂O, CO, OCS, SO₂ at the 30-40 km

VenSpec-U is an ultraviolet spectrometer designed to:

- mesospheric variability of **SO and SO₂**, cloud and aerosol properties
- *distinguish atmospheric dynamics change* from volcanic emissions

Venera-D Workshop, 2-5 October 2019

Slide 19/26

Key principles of EnVision observations

- **Nested SAR imaging** is essential for understanding context and global significance
- Combination of interior, surface, and atmospheric data (co-located and sometimes simultaneous observations) is key to understanding processes and cycles
- Careful selection of Regions of Interest a representative set of surface targets (targeted mission)
- Repeated observations over at least 2 Venus sidereal days (cycles)

DIFFERENT

Synergy of EnVision payload: a summary

Slide 21/26

Venera-D Workshop, 2-5 October 2019

Comparative planetology

Comparing geophysical processes on Earth, Venus, Mars, Titan

Impact craters & modification

Radiative Balance. Greenhouse effect

Atmospheric dynamics, weather, turbulence

Atmospheric chemistry, clouds

Meandering flow channels

Sand and dust transport, weathering

Volcanism, tectonism, exchange with atmosphere

Interior structure and its evolution

Slide 22/26

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Atmospheric electricity, lightning

Exchanges with space Solar wind & magnetosphere

Planetary Evolution

What is Venus: a "failed Earth"? A proto-Earth?

- Was Venus habitable before developing a runaway greenhouse effect?
- Or did the water escape during steam atmosphere phase, before it ever condensed?
- Planetary evolution depends sensitively on tectonic regime

Divergent Climate Histories

Slide 23/26

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

 H_2O dissociates H lost to space O lost to space and surface

Oxygen accumulates in atmosphere

Short term variations from orbit variation and other extreme events

Subsequent oscillations in orbital elements affect atmosphere on 10⁴-10⁶ year timescales

Uniting the community

- EnVision website <u>https://envisionvenus.eu/</u>
- EnVision science conference: Paris, 12-14 February, 2020

Venera-D Workshop, 2-5 October 2019

Thank you !

Venera-D Workshop, 2-5 October 2019

Understanding WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

SAR cm-scale changes: a Terrestrial lesson

UNDERSTANDING WHY OUR CLOSEST

Exploration and "spotlight" scales (10-100 km @ 5-10 m/px)

• ≤ 10 m resolution will be used for selected targets, including Venera landing sites

2 m UltraRes 30-km wide stripmap swath

Slide 27/26

Venera-D Workshop, 2-5 October 2019

SAR science operations

Slide 28/26

Venera-D Workshop, 2-5 October 2019

UNDERSTANDING WHY OUR CLOSEST NEIGHBOUR IS SO DIFFERENT

Normal look

Pass to Pass (option)

Opposite look (goal)

Polarimetry UltraRes

