

Surface-atmosphere interaction: how it may influence in-situ analyses on Venus surface

Gilles BERGER

IRAP, Observatoire Midi-Pyrénées, Toulouse, France

Consequences for Venera-D

A few questions

- ✓ Are remote measurements representative of bulk composition ?
- \checkmark What surface composition is expected ?
- \checkmark How is the scientific payload sensitive to surface modification
- \checkmark What is expected as a function of elevation and age ?

Fig. 2. K/U diagram for the content of potassium and uranium in the major types of Earth and Venus rock.

XR-fluorescence (Venera 13-14)

Ground observations

Dynamic penetrometer (physical properties, electric resistivity)

> Little or not penetrative technics

Radar reflectivity anomaly, another interesting feature

A variety of radar-bright lava flows radiate from the summit area down the flanks of a shield volcano on Venus. (NASA *Magellan* image.)

FeS₂ Bi₂Te₃ (Ca,Na)PO₄ PbS ?

To be checked:

- ✓ Iron coating on olivine with associated enstatite?
- ✓ Sulfide or sulfate versus temperature
- ✓ Persistence of inherited hydrous silicates (mica, amphibole)
- ✓ Nothing on elementary transfer into the gas phase

Experimental

Gas sampling and monitoring system

Top of chamber

Rock Samples in a Pt crucible

Chamber

(open)

Furnace

Gas sampling cell, filled with ammonia for ICP-MS analysis Gas monitoring for SO_2 , H_2S , CO

Gas sampling and monitoring system

Pumice Picritic basalt

Obsidian

Synthetic basalt glass 1 week 470°C 90 bar

(up to 550 bars with water)

(methods)

Berger et al., Icarus 2019

In dry gas

Scanning electron microscopy (SEM)

At lower T°C

About the glasses ...

High resolution transmission electron spectroscopy (HR-TEM) on FIB preparations

Spot# Degree	d-Spacing s	Rec. Pos.		Degree	S
-0	(nm)	(1/nm)	to Spot	:1	to x-axis
1	0.2970	3.3	67	0.00	85.10
2	0.1460	6.8	47	1.85	83.24
3	0.2554	3.9	15	34.64	50.46
4	0.1574	6.3	55	36.81	48.29
5	0.2549	3.9	24	69.07	16.03
6	0.1654	6.0	47	74.41	10.68
7	0.2557	3.9	10	116.44	-31.35
8	0.1677	5.9	63	109.08	-23.99
9	0.2626	3.8	09	148.64	-63.54
10	0.1542	6.4	84	147.72	-62.63

X-ray-photoelectron spectroscopy (XPS)

Ar-beam ablation

Gas analyses by ICM-MS after sampling in ammonia

Gas analyses by ICM-MS after sampling in ammonia

(methods)

Berger et al., Icarus 2019

about olivine ...

Fe comes from neighbor minerals, likely magnetite, by surface diffusion

Table	e 9.1: Notation for Short-Circuit Diffusivities				
D^{D} (undissoc) diffusivity along an undissociated dislocation core (i.e., a der, or a "pipe" of diameter, δ)					
$D^D(ext{dissoc})$	diffusivity along a dissociated dislocation core (i.e., a cylinder, or a "pipe" of diameter, $\delta)$				
D^B diffusivity along a grain boundary (i.e., a slab of thic					
D^{S}	diffusivity along a free surface (i.e., a slab of thickness, $\delta)$				
D^{XL}	diffusivity in a bulk crystal free of line or planar imperfections				
D^L	diffusivity in a liquid				

(Balluffi et al., 2005)

Behavior of inherited clays under present-day conditions

Conclusion on the present-day surface alteration

To be has been checked:

yes no ✓ Iron coating on olivine with associated enstatite?

- ✓ Sulfide or sulfate versus temperature yes
- ✓ Persistence of inherited hydrous silicates (mica, amphibole) Possibly yes
- ✓ Nothing on elementary transfer into the gas phase Na, Ca, Mg

Key lesson

- ✓ Even in the dry modern atmosphere, some rock constituents (olivine and glass) are chemically modified in the first μ m of the surface
- ✓ Deposition of iron oxide and sulfate coating

Is	olated oli	vine cr	ystal						
			5	A M		A.		5	micron
282	5/27/2019 4:45:01 PM	mag 및 5 000 x	WD 8.6 mm	HV ئ 3.00 kV	det CBS	vac mode High vacuum	НFW 25.4 µm	tilt 0 °	<u> </u>

500 bars H₂O + 50 bars Venus gas

Basalt glass

obsidian glass

Dependence of the alteration layer to water fugacity

Dependence of the alteration layer to water fugacity

Present day highlands ?

Present day highlands ?

Next future for the laboratory experiments

Thank you

High temperature

- Deep recrystallization of vitreous material
- Nonlinear relation with PH₂O
- Plagioclase and pyroxene seem preserved